Errata

Title & Document Type: 4938A Network Circuit Access Test Set Operating and Service Manual

Manual Part Number: 04938-90003

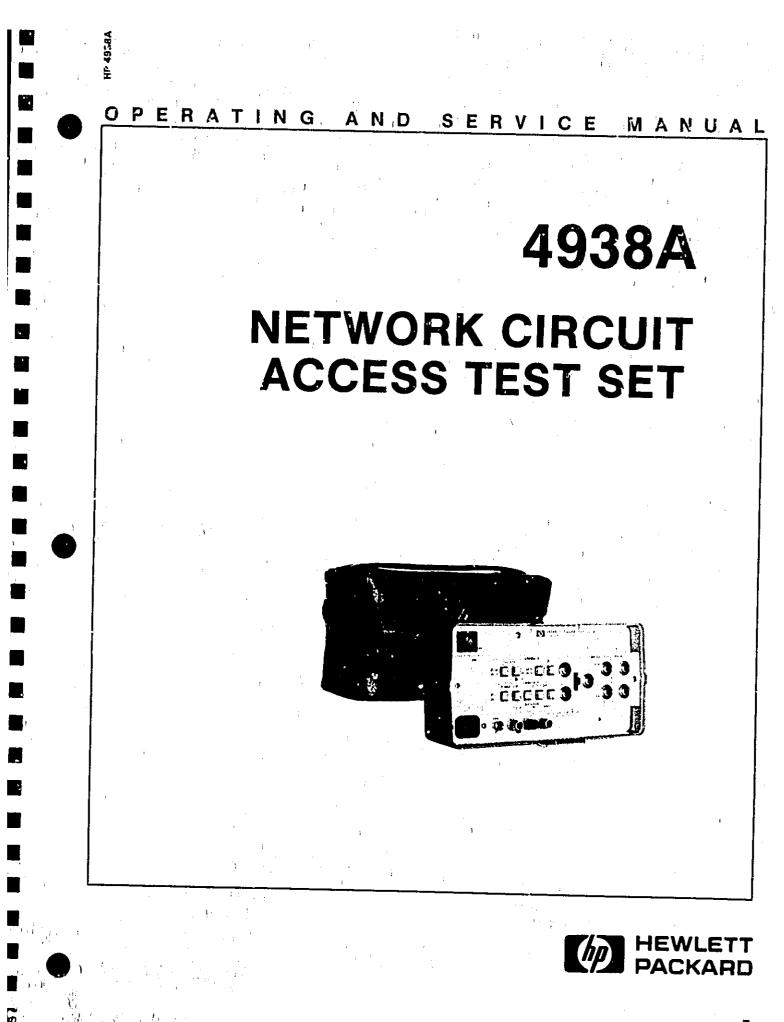
Revision Date: September 1984

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, life sciences, and chemical analysis businesses are now part of Agilent Technologies. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A. We have made no changes to this manual copy.


Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

HP 4938A

SAFETY

This product has been designed and tested according to International Safety Requirements. To ensure safe operation and to keep the product safe, the information, cautions, and warnings in this manual must be heeded. Refer to Section 1 for general safety considerations applicable to this product.

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other international Standards Organization members.

WARRANTY

This Hewlett-Packard instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, HP will, at its options, either repair or replace products which prove to be defective.

For Warranty service or repair, this product must be returned to a service facility designated by HP. Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designed by HP for use with an instrument will execute its programming instructions when properly installed on that instrument. HP does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance. No other warranty is expressed or implied. HP specifically disclaims the implied warranties of merchantability and fitness for a particular purpose.

EXCLUSIVE REMEDIES

The remedies provided herein are buyer's sole and exclusive remedies. HP shall not be liable for any direct, indirect, special, incidental, cr consequential damages, whether based on contract, tort, or any other legal theory.¹

1

ASSISTANCE

Product maintenance agreements and other customer assistance agreements are available for Hewiett-Packard products. For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

CW&A 4/84

OPERATING AND SERVICE MANUAL

HEWLETT-PACKARD MODEL 4938A Network Circuit Access Test Set

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 2432A.

For additional important information about serial numbers, see INSTRUMENTS COVERED BY MANUAL in Section 1.

COPYRIGIT HEWLETT-PACKARD COMPANY/COLORADO TELECOMMUNICATIONS DIVISION 1984 5070 Lentennial Blvd., P.O. Box 7050, Colorado Springs, CO 80933 ALL RIGHTS RESERVED

IANUAL PART NO. 04938-90003 MICROICHE PART NO. 04938-90004

Printed Sept 1984 PRINTED IN U.S.A.

MODEL 4938A WARNINGS/CAUTIONS

WARNING

SAFETY

If this instrument is to be energized via an autotransformer for voltage reduction, make sure the common terminal is connected to the earthed pole of the power source.

BEFORE SWITCHING ON THIS INSTRUMENT, the protective earth terminals of this instrument must be connected to, the protective conductor of the (mains) power cord. The mains plug shall only be inserted in a socket outlet provided with a protective earth contact. The protective action must not be negated by use of an extension cord (power cable) without a protective conductor (grounding).

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the short-circuiting of fuse holders must be avoided.

Whenever it is likely that the protection offered by fuses has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

GROUNDING

Any interruption of the protective (grounding) conductor (inside or outside the instrument) or disconnecting the protective earth terminal can make this instrument dangerous. Intentional interruption is prohibited.

HIGH VOLTAGE

Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazard involved.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

Adjustments and service described herein are performed with power supplied to the instrument while protective covers are removed. Energy available at many points, if contacted, result in personal injury.

CAUTION

LINE VOLTAGE

14

BEFORE SWITCHING ON THIS INSTRUMENT, make sure instrument requirements match the voltage of the power source.

GROUNDING

ïi

BEFORE SWITCHING ON THIS INSTRUMENT, ensure that all devices connected to this instrument are connected to the protective (earth) ground. BEFORE SWITCHING ON THIS INSTRUMENT, ensure that the line power (mains) plug is connected to a three-conductor line power outlet that has a protective (earth) ground. (Grounding one conductor of a twoconductor outlet is not sufficient.)

IEC SYMBOLS

The following is a list of key IEC symbols used by Hewlett-Packard. All symbols are normally applied adjacent to the device requiring the symbol. They shall nor be placed on removable parts likely to be detached or fost.

A

VA

w

Wh

VAh

Instruction Manual symbol: If necessary, to preserve the apparatus/from damage it is necessary for the user to refer to the instruction manual, then shall the apparatus be marked with this symbol (FEC 348;16a).

> Terminel devices ted from the interior by live voltages that may be dongerous when connecting to or disconnecting from those clevices shall be marked with the flash shown when the voltage exceeds 1 KVs. The flash shall be red (IEC 348,18c)

> Earth Terminals. If the use of this symbol for the protective earth terminal is not permitted by National Standards, it may be modified, for example, by being placed inside a circle (IEC 348,18a).

AC current (IEC 117-1, symbol No. 3).

DC current (IEC 117-1, symbol No. 2).

AC or DC current (IEC 117 1, symbol No. B).

Frame or chassis connection. The hatching may be rumpletely or partly omitted if there is no unbiguity. If the hatching is omitted, the line representing the frame or charsis shall be thicker (IEC 117-1, symbol No. 87).

Ampere (IEC 117-4, symbol No. 356).

Volt HEC 117-4, symbol No. 3571.

÷ 1

Voltampere (IEC 117-4, symbol No. 358).

Wate (IEC 117-4, symbol No. 360).

Watthour (IEC 117-4, symbol No. 361).

Voltamperehour HEC 117-4, symbol No. 362).

Hertz (IEC 117-4, symbol No. 365).

7

Hz

Contactor, normally closed. In order to avoid confusion with the symbol for a capacitor, the distance between the horizontal (as drawn here) lines should be at least equal to the length of those lines (IEC 117-3, symbol No, 215.2).

In addition, the following describes the use of Warnings, Cautions and Notes used in HP Automatic Test System Manuals.

Warnings, cautions and notes. (All) Warnings and cautions shall precede the text to which each applies but notes may precede or follow applicable text depending on the material to be highlighted. Warnings, cautions, and notes shall not contain procedural steps not shall they be numbered. When a warning, caution, or note consists of two or more paragraphs, the heading WARNING, CAUTION, NOTE, shall not be repeated above each paragraph. If it is ever necessary to precede a paragraph by both a warning and a note, or a caution and a note, etc, they shall appear in the sequence as noted, namely, warnings, cautions, notes. Such inserts in the text shall be short and concise and be used to emphasize important and critical instructions.

An operating procedure, practice, etc, which, if not correctly followed, could result in personal injury or toss of life.

CAUTION

An operating procedure, practice, etc. which, if not strictly observed, could result in damage to, or itestruction of, equipment.

NOTE: An operating procedure, condition, etc. which it is essential to highlight.

Health hazards precaution data. (All) When hazardous chemicals or adverse health factors, in the environment or use of the equipment carfnot be eliminated, appropriate precautionary requirements shall be included.

iii/(iv blank)

Page

Table of Contents

I GENERAL INFORMATION

Section

1-1,	Introduction					•				 •	,	,		•		*		• •		,						,				1-1	1
1-4.	Specification			.,		•				 				•			•		•	• •	,					,			•	1-	1
1-6.	Safety Considerations	• •	·			•		,	•	 			•		• •			. ,	,	•	,	•		•						1-1	1
1-8.	Instruments Covered by t	his	Ma	nu	al.	•	• •			 • •			•	•	• •		, '			٠	•	• •			•					1-1	1
1-12.	Description			•	.1		• •		,		,		,		• •			, ,		,										1-;	2
1-24,	Warranty.				,					 ,		•	, ,		• •		•			,										1-3	3
1-26;	Acessories Available	• •		,	•				• 1				•			ŀ	.,	. ,	•		•			.,	,	ب د			,	1-:	3
1-27,	Recommended Test Equip	omė	int.			. ,	• •	•	•		•			. ,		,	,		,				. ,	۰,	Ļ		, ,			1-:	3
1-29.	Operating Temperature ,				. ,		•		•	 ,	,	,		. ,		•	•		,	,	•					•		,	,	1-3	3

II INSTALLATION

2-1.	Introduction Section 1997	• •	• •						.,		,		•				•	. ,				,		• •		•		2~	1
2-3.	Initial Inspection		, ,			۰,		•			,					,	,	. ,			,						•	2~	1
2-5,	Preparation for Use,							٠	• •				,				,			i.			•			,	•	2-	1
2-6,	Power Requirements													1														2-	1
2-8,	Power Cable							•		,	•					,				,	,	•	• r					Ź-	1
2-10,	Operating Environment .		• •	 ,				,		,												,	• . (. 2-	1
2-11.	Temperature				• •								,			,											,	. 2-	1
2-13,	Humidity	• •		 ,		•		,	, ,						. ,							. /	ĺ.,					. 2-	2
2-15,	Storage and Shipment		• •						, ,	,		• •		¥					•		,	.'						. 2-	2
2-16,	Environment,	• •						,		,	•					,												. 2-	2
2-18.	Packaging	• •		 ,			: • •	,		•				•		,										,		2-	2
																				•		-			-				

III OPERATION

3-1.	Introduction			. ,				• •		,		,							,	, ,			•			,	,	,						3-1
3-3.	Operating Characteristics ,	•			. ,		,		•		,	ŧ	• •													,								3-1
3-6.	Panel Features	,				,	į.		,		,	•																				-		3-1
3-8,	Operating Instructions		,			,					•													,	,	Ì	Ś							3-4
3-9.	Power On and Set Up									•	•		• •											Ś		ĺ	Ś					į		3-4
3-15.	Operating Procedures	•	•			,				,						,	.1						ĺ		ĺ	ĺ						ļ	•	3-5
3-16.	Ring Simulator									1						,		Ś				Ĺ		Ś	ĺ	·	Ś	Ś						3-5
3-22.	Loop Simulator. , ,										ļ						ĺ				ĺ		ĺ	ĺ	ĺ							Ì		3-6
3-27.	Battery Simulator									,						Ś	1	Ś			ļ		Ĺ	į		ļ	•				•			3-7
3-28.	Four Wire Circuit Testir																																	
3-37,	System Configuration	Ţ							Ĺ	Ì					ĺ						ĺ	÷			•		·		• •			•	3	-10
3-38.	Using the HP 4938A wit	h I	the	۶F	IP	4	93	37,	۲,	T IN	Ńs	5			ĺ	÷					į			į	•	•	•	,	• •	• •		•	ă,	-10
3-40.	Using the HP 4938A wit	h I	he	۰ ۲	iΡ	4	93	35/	N 1	7 EN	MS	5 0	ar.	t	۱ė		•	•	• •	•	•	•	•	•	•	•	•	•	• •	•		•	Ŭ	,0
	HP 4945A TIMS	,	,				,		•	,				.,			•	,						,				,					З.	-10

V

MODEL 4938A TABLE OF CONTENTS

Table of Contents (con't)

Page

-1

Section

IV PERFORMANCE TEST AND TROUBLESHOOTING

4-1.	Introduction																									,							
4-3.	Equipment Required , ,	•		•	• •	•	•	•	•	• •	••		•	*	• •	•	•	• •	•	•	•	• •	•	•	٠	•	۲	•	• •	t, t	۲	. 4	-1
4~5	Test Record.	•	•	•	· •	•	•	•	*	* 1	• •	•	٠	•	• '•	۲	•	• •	•	•	•	•	٠	٠	1	•	٠	• •	• •	•	٠	, 4	-1
4-7	Calibration Cycle	*	٠	,	• •	•	•	•	•	• •	•	•	•	•	• •	٠	٠	• •	•	٠	•	•	٠	٠	.•	٠	•	•	• •	•	٠	. 4	-1
4-9	Calibration Cycle.,	•	۲	•	• •	•	•	٠	* •	• •	•	•	•	• •	• •	Þ	•	• •	÷	۲	•	•	٠	٠	٠	٠	۲	• •		٠	•	. 4	-1
4-10.	Performance Test	2	•	•	• •	٠	۲	٠	• •	• •	•	•	•	، ،	• •	۲	•	• •	;	•	• •	٠	٠		٠	٠	•	• •	• •	٠	٠	, 4	-2
		٠	•	•	• •	•	٠	٠	• •	•	•	•	٠	• •	•	٠	•	•	,	٠	• •		٠	٠	•	•	•	• له		٠	•	, 4	-2
4-11.	Power Supply Voltages, Simpley Transformer	٠	•	۲	• •	٠	٠	٠	۲	i +	•	•	•	• •	• •	۲	, ,	· F	•	•		•	•	÷			ь į			•	,	, 4	-3
	ounder Lightrought '				• •	,				١.	•																					đ	- 4
4-13.	Continous 20 Hz Ringing						•		: • •			·,															1					⊿	-6
4-14.	Continous 30 Hz Ringing	۲		• •	•	•				•											<u>i</u>											4	-8
4-15,				•						•	,	<u>ب</u>		, ·,							. !											4-	10
4-16.	Duty Cycle	٠		• •	•) • •		•	•	• •			÷	, ,						•	•						ĺ		4-	11

V ADJUSTMENTS

	5-1. Introduction
/1	REPLACEABLE PARTS

6-1. Introduction	
6-3 Replaceable Parts List.	6-1
6-5. Ordering Information	6-1

VII MANUAL CHANGES

7-1. Introduction

VIII SERVICE

ł

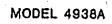
)) V**i**

	8-1,	Introduction		,	•	•	,	•	•	• •	•	•	•	•	•	٠	٠	•		• '	•	•		•	•	•			•	•		 •	,	ŀ		. 8-	• 1
티	o ⊷.	Safety Consideration ,	۲	•	•	۰.	•	•	•	• •	•	,	•	٠	÷	٠	•	•	•	•	•	•	. ,	•	•	•		٠	•	•	• •		,			. 8-	1
						•																														•	
	J (),	meenamear			•	•	•	•	۰÷ ۱																											o	
	·	ombiev it gliptotitiet 2	> , -	•																																0_	- - -
•	D = 1 4.	Originate Circuitry,	,																																	. 8-	2
. (3-21.	Terminate Circuitry .						. ,																			·					,	·	-	-		5

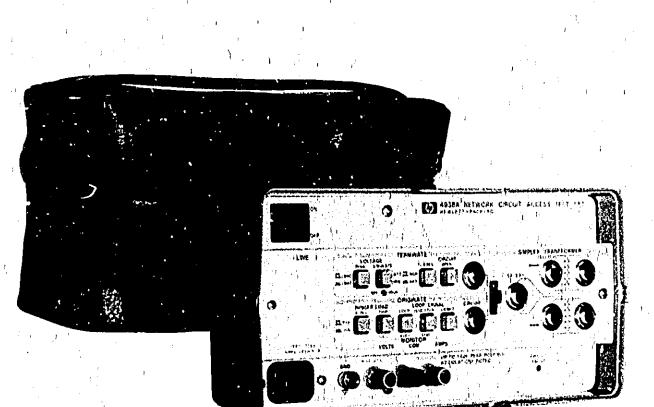
MODEL 4938A TABLE OF CONTENTS

List of Illustrations

rigure	Page
1-1. Model 4938A Network Circuit Access Test Set	'
3-1. Front Panel Controls, Connectors, and Indicators	
4-1. Simplex Transformer Test Setup,	
6-1. Illustrated Parts Breakdown of Assemblies	6~6
 8-1. A1 Board Component Locator 8-2. A1 Board Schematic 8-3. A2 Board Component Locator 8-4. A2 Board Schematic 	8-4 8-5 8-5 8-6 8-6


.

•


.

List of Tables

Table	1	Page
1-1. Specifications	• • • • • • • • • • • • • • • •	1-4 1-6
2-1. Power Cables Available		2-2
4-1. Power Supply Voltages	• • • • • • • • • • • • • • • •	4-3
6-1. Reference Desginations and Abbrevations		6-4
6-3. Replaceable Parts.		6-7

1-0

٠,

Figure 1-1. Model 4938A Network Circuit Access Test Set

1-1

SECTION I

GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This Operating and Service Manual contains information required to install, operate, test, adjust, and service the Hewlett-Packard Model 4938A Network Circuit Access Test Set (NCATS). Figure 1-1 shows the instrument and accessories supplied. Throughout the remainder of this manual the Model 4938A will be referred to as HP 4938A or the instrument.

1-3. The Manual part number is listed on the title page. Also listed on the title page of this manual is a Microfliche part number. This number can be used to order 4 X 6 inch microfilm transparencies of the manual. Each microfliche contains up to 96 photo-duplicates of the manual pages. The microfliche package also includes the latest Manual Changes supplement as well as pertinent Service Notes.

1-4. SPECIFICATIONS '

1-5. Instrument specifications are listed in table 1-1. These specifications are the performance standards or limits against which the instrument is tested.

1-6. SAFETY CONSIDERATIONS

7-7. This product is a Safety Class 1 instrument (provided with a protective earth terminal). The instrument and manual should be reviewed for safety markings and instructions before operation.

1-8: INSTRUMENTS COVERED BY THIS MANUAL

1-9. Attached to the instrument is a serial number plate. The serial number is in the form; 0000A00000. It is in two parts; the first four digits and the letter are the serial prefix and the last five digits are the suffix. The prefix is the same for all identical instruments; it changes only when a change is made to the instrument. The suffix however, is assigned sequentially and is different for each instrument. The contents of this manual apply to the instruments with the serial number prefix(s) listed under SERIAL NUMBERS on the title page.

1-10. An instrument manufactured after the printing of this manual may have a serial number prefix that is not listed on the title page. This unlisted serial number prefix indicates the instrument is different from those described in this manual. The manual for this newer number is accompanied by a yellow Changes Sheet supplement. This supplement contains "change information" that explains how to adapt the manual to the newer instrument.

1-11. For information concerning a serial number prefix that is not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard sales office.

1-12, DESCRIPTION

1-13. The HP 4938A is a test set that, when used in conjunction with the HP 4937 Transmission Impairment Measuring Set, provides the capability to perform all the required signaling and transmission tests or measurements on telephone voice and voiceband data circuits.

1-14. The HP 4938A is an ac powered, portable test set that is installed in a front panel dust cover that fits the HP Models 4935A and 4937A Transmission Impairment Measuring Sets,

1-15. The HP 1938A features can be divided into four main categories:

1. Ring testing

}

(-)

1-2

h

- 2. Loop signal margin testing
- 3. Battery Simulation
- 4. 4 wire network access

1-16. Ring Testing--this feature provides two functions:

n Fr

1. Ringing voltage generator 2. Ringer termination

1-17. The Ringing Voltage Generator is a telephone company specified source of ringing used for verifying the operation of a ringer or ringing detector in an Off Premises Extension (OPX). The generator provides 86 Vrms at either 20 or 30 Hz superimposed on -48 Vdc with a 2-second on and a 4-second off duty cycle. When the OPX goes off-hook or a loop closure is sensed, the ringing will stop (ring trip). The OFF-HOOK indicator is illuminated to show this condition.

1-18. The Ringer Termination is a terminating impedance that simulates the load of 3 ringers, which is a Ring Equivalent Number 3 (REN-3). A test jack is provided to measure the ringing voltage from a remote generator. A ring trip closure is also provided to simulate an off hook condition to the remote generator.

1-19, Loop Signal Margin Testing--Loop Signaling margin tests are performed using a dc loopclosure network, which is internal to the HP 4938A NCATS. Using an externally connected multimoter, the network circuit-loop current can be verified. The HP 4938A can initiate either a Loop Start or Ground Start line seizure on a 2-wire circuit.

1-20. The loop network can be connected to the SIMPLEX TRANSFORMER jacks. This 4-wire access transformer provides 4-wire Loop or Ground Start signaling. This allows the HP 4937A, and the HP 4935A Transmission Impairment Measuring Sets to perform 4-wire transmission tests.

1-21. Battery Simulation. The HP 4938A provides a source of 48 volts for simulation of the Central Office Battery. The battery simulator will detect the presence of a loop closure greater than 17 mA and will indicate the closure by Illuminating the OFF HOOK led.

1-22. Four wire network access--A 4-wire transformer with Simplex leads is provided for signaling and for transmission tests in 4 wire environments on the network side of the network interface (NI). Loop Start and Ground Start Signaling or busy conditions may be enforced using the internal loop signaling network or the internal battery simulator respectively.

1-23. This feature also allows simultaneous 4 wire network access and 4 wire transmission testing when used in conjunction with the HP 4937A, and the HP 4935A Transmission impairment Measuring Sets.

1-24. WARRANTY

1-25. Instrument warranty is as listed inside the front cover of this manual.

1-26. ACCESSORIES AVAILABLE

1. Test Cord w/310 male to alligator clips, 60 inches, HP P/N 18182A

2. Test Cord w/310 male at both ends, 36 inches, HP P/N 15513A

3. Power Cord, HP P/N 8120-1378

1-27, RECOMMENDED TEST EQUIPMENT

1-28. Equipment required to maintain the Model 4938A is listed in table 1-2. Other equipment may be substituted if it meets or exceeds the critical specifications listed in the table.

1-29. OPERATING TEMPERATURE

1-30. Normal operating temperature of the HP 4938A should be between 0 degrees C and +55 degrees C (+32 degrees F and +131 degrees F).

Ý

 $t_{\rm PI}$

÷

1 .

3.1

 \dot{Y}_1

11

솀

12

5

叞

\

2,

F

2

10

١ 1

j I

1 ł

ŧ

ł ;

1	Table 1-1. Specifications
Ringing Voltage General	lor
Output	$\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{$
Level	86 volts rms (typical)
Frequencies	20 Hz +/-3 Hz
Waveform	30 Hz +/-3 Hz
Duty cycle	Shaped squarewave 2 seconds on and 4 seconds off
DC offset	-48 volts dc Tip to Ring (typical)
Impedance	220 ohms in series with Tip and with Ring
r = 1 (1)	Tip is grounded
Ring Trip	$\Delta f_{\mu\nu} = -\frac{1}{4} \left[\frac{1}{2} $
Threshold	17 mÅ (typical)
Time to trip	< 200 ms
Ringer Termination	
ninger renmination	
REN-3 load impedance	2330 ohms +/-1% in series with 0.45 uF +/-10%
Ring trip closure	330 ohms +/-1%, 5 watts
Loop Signaling Network	
Loop start	430 ohms +/-1%, 5 watts
Ground start	550 ohms +/-1%, 5 watts momentary contact
: •	: : :
Four Wire Network Acce	SS
Simplex transformer	Dual center tapped

Insertion loss: <1dB at 1004 Hz Flatness (relative to 1004Hz): +/-0.5 dB, 200 Hz to 4 kHz 1

 $\{i,j\} \in I$

Battery Simulator

ł

Output Level 48 volts dc typical Maximum current 100 mA 220 ohms in series with Tip and with Ring Impedance Tip is grounded

Į 1

}

1-5

: :

	Table 1-1. Specifications (cont'd)
General	
Power Requirements 108 to 126 Vac 60 Hz	
Temperature Range 0 C to +55 C (+32 F	to +131 F)
Dimensions Width 127mm (5.0 Length 260mm (10. Depth 91mm (3.6	3 inches)
Weight, 1.6 kg (3.2	pounds)

41

ł

5.4

-

.

ដែល គេលា

ι.,

Instrument	Critical Opecifications	Recommended Nodel	Use
Multimeter	dc current	HP 3478A	P,T
Oscilloscope	Dual Chan: 5mV/div	HP 1740A	р
Power Supply	50 Volt	HP 6200B	P
Signal Generator		HP 3336B	p
Voltmeter		HP 3456A	ą
310 to Dual Bannana	Connector	Pamona Electronics 211	2 P

Table 1-2. Recommended Test Equipment

P=Performance Test I=Troubleshooting

1-6

SECTION II

2-1. INTRODUCTION

2-2. This section provides installation instructions for the Model 4938A NCATS. This section also includes information about initial inspection and damage claims, preparation for use, power requirements, storage and shipment.

2-3, INITIAL INSPECTION

2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment should be as shown in figure 1-1. The procedures for checking electrical performance are given in Section IV. If the contents are incomplete, if there is mechanical damage or defect, or if the instrument does not pass the performance tests, notify the nearest Hewlett Packard sales and support of-fice. If the shipping container is damaged, or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard sales and support office.

2-5. PREPARATION FOR USE

2-6. Power Requirements

2-7. This instrument requires a power source of 108 to 128 Vac, single phase 48 to 66 Hz.

2-8, Power Cable

Any interruption of the protective (grounding) conductor (inside or outside the instrument) or disconnecting the protective earth terminal can make this instrument dangerous to electrical shock.

2-9. This instrument is supplied with a three-wire power cable. When connected to an appropriate three-wire ac power receptacle, the cable grounds the instrument. See table 2-1 for available power cables.

WARNING

2-10. OPERATING ENVIRONMENT

2-11. Tempersture

2-12. This instrument may be operated in temperatures from 0 degrees C to +55 degrees C (+32 degrees F to +131 degrees F).

Plug Type :	Cable HP Part Number	с р	Plug Dascription	Cable Length (inches)	Cable Color	For Use In Country
1250	8120-1348 8120-1398 8120-1754 8120-1378 8120-1378 8120-1676	5 5 7 1 6 2	Straight *NEMA5-15P 90° Straight *NEMA5-15P Straight *NEMA5-15P 90° Straight *NEMA5-15P	80 80 36 80 80 36	Black Black Black Jade Gray Jade Gray Jade Gray	United States, Canada, Japan (100V or 200V), Mexico, Philippines, Taiwan
¹ •Part number shown for plug including plug. E = Earth Ground; L = Line, M	1	fier fa	r plug only. Number shown i	or cable is HP	Part Number fo	r complete cable

Table 2-1. Power Cables Available

/ 1 \

2-13. Humidity

2-14. This instrument may be operated in environments with humidity from 5 percent to 95 percent relative humidity at +40 degrees C (+104 degrees F). However, the instrument should be protected from temperature extremes that can cause condensation within the instrument.

2-15. STORAGE AND SHIPMENT

2-16. Environment

2-17. The instrument may be stored and shipped within the following environmental limits:

- Temperature...... -20 to +65 degrees C (-4 to +149 degrees F)
- Humidity...... Up'to 90% Relative at +65 degrees C (+149 degrees F)

2-18. Packaging

2-19. Tagging for Service.--if the instrument is being returned to Hewlett- Packard for service, please complete one of the blue repair tags located at the back of this manual and attach it to the instrument.

2-20. Original Packaging.--Containers and materials identical to those used in factory packaging are available through Hewlett-Packard sales and support offices. If the instrument is being returned for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also mark the container FRAGILE to ensure careful handling. In any correspondence, refer to the instrument by model number and full serial number.

2-21. Other Packaging.--The following general instructions should be used for repacking with commerically available materials:

a. Wrap the instrument in heavy paper or plastic. (If shipping to Hewlett- Packard office or service center, attach a tag indicating type of service required, return address, model number, and full serial number.)

2-3/(2-4 blank)

- b. Use strong shipping container. A double-walled carton made of 350-pound test material is adequate.
- c. Use a layer of shock-absorbing material 70 to 100 mm (3 to 4 inches) thick around all sides of the instrument to provide firm cushioning and to prevent movement inside the container. Protect the control panel with cardboard.

d. Seal the shipping container securely.

I,

e. Mark shipping container FRAGILE to ensure careful handling.

f. In any correspondence, refer to instrument by model number and full serial number.

OPERATION.

SECTION III

3-1. INTRODUCTION

3-2. This section contains an explaination of the HP 4938A operating modes and describes the function of the front panel controls.

3-3. OPERATING CHARACTERISTICS

__1

3-4. The HP 4938A provides four major functions:

- Ring Testing
- Loop Signal Margin Testing
- Battery Simulation
- Four Wire Network Access Simplex Signaling

3-5. The HP 4935A, HP 4937A, and the HP 4945A Transmission Impairment Measuring Sets can perform four wire circuit testing with the use of the HP 4938A. This method of testing four wire circuits is described later in this section.

3-6. PANEL FEATURES

3-7. Figure 3-1 identifies the front panel features and includes a brief description as to the function of each feature. The numbers used to reference these functions are also used in the procedural steps next to the control name.

1. LINE switch: Applies power to the instrument when in the ON position.

2. RING: Selects frequency of ringer voltage; Up is 20 Hz and Down is 30 Hz.

- 3. OFF HOOK: Indicates that a dc loop has been closed across the TERMINATE CIRCUIT Jack and that a current of at least 17 mA typically is flowing.
- 4. SIMULATE: Selects function; Up is -48 volt battery simulator (-48 volts Tip to Ring); Down is 20 or 30 Hz ring voltage superimposed on -48 volts.
- 5. T/R REV: Tip/Ring Reverse; Up position the Tip and Ring are connected to the TERMINATE CIRCUIT Jack in normal polarity. Down position the Tip and Ring are connected to the TERMINATE CIRCUIT Jack in reverse polarity.
- 6. OPEN: Opens circuit; Up position the TERMINATE CIRCUIT Jack is connected. Down position the TERMINATE CIRCUIT Jack is disconnected.
- 7. TERMINATE CIRCUIT juck: Provides connection between the TERMINATE CIRCUIT functions and the circuit under test.

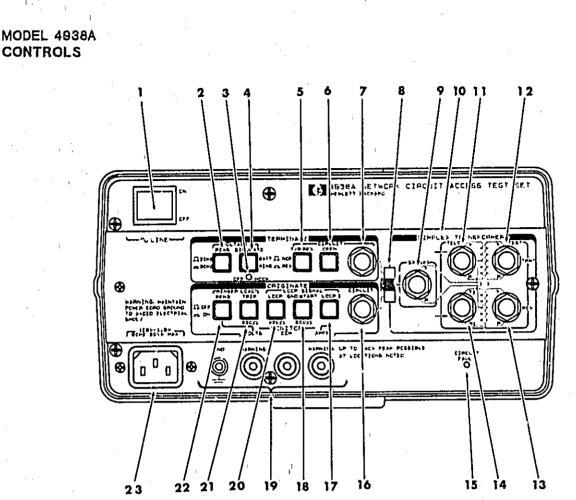


Figure 3-1. Front Panel Controls, Connectors, and Indicators.

- 8. Simplex Lead Patch Switch: provides an internal connection between either the TERMINATE or ORIGINATE functions and the SIMPLEX TRANSFORMER. The slide switch positions are:
 - Up position connects the TERMINATE functions to the SIMPLEX TRANSFORMER.
 - Middle position disconnects the SIMPLEX TRANSFORMER from both the TERMINATE and the ORIGINATE functions.
 - Down position connects the ORIGINATE function to the SIMPLEX TRANSFORMER.
- 9, SX/SX1 Jack: Simplex lead SX is the Tip and lead SX1 is the Ring.
- 10. SIMPLEX TRANSFORMER: Provides 4 wire network access with Simplex leads, SX/SX1. The front panel graphics show the internal connections.
- 11, TELCO Jack: Output from transformer to telephone company circuits.
- 12. TEST TRMT Jack: Input to transformer from test equipment.
- 13. TEST RCV Jack: Output from transformer to test equipment.
- 14. TELCO Jack: Input/to transformer from telephone company circuits.
- 15. CIRCUIT FAULT LED: Indicates that a circuit fault (a short or a high foreign voltage) exists on the circuit being tested. The internal protection circuit will automatically disconnect the instrument from the faulty circuit. The fault must be cleared before continuing with the testing.

3-2

- 16. ORIGINATE CIRCUIT Jack: Provides connection between the ORIGINATE CIRCUIT functions and the circuit under test.
- 17. LOOP I: Momentary switch that, when pressed interrupts the Tip/Ring loop closure and places the MONITOR COM and AMPS binding posts in series with the loop for measuring loop current.
- 18. GND START: Momentary switch that, when pressed grounds the ring through a load of 550 ohms.

19. Monitor binding posts.

- VOLTS: Access to monitor ring voltage from far end generator or to monitor dial tone after affecting loop closure.
- COM: Common connection for voltage or current monitor.
- AMPS: Access to monitor loop current.
- GND: Chassis ground.

20. LOOP: Push/push switch that, when pressed in, connects 430 ohms across the loop circuit.

- 21. TRIP: Push/push switch that, when pressed in connects 330 ohms across the toop circuit.
- 22. REN3: Push/push switch that, when pressed in, applies a load to the circuit that is equivalent to the load of three ringers. The voltage can be measured across the VOLTS and COM binding post.

23. Connection for power cord.

3-3

3-8. OPERATING INSTRUCTIONS

3-9, POWER ON AND SET UP

3-10. Make sure all front panel pushbuttons are in the up position before connecting LINE power to the instrument.

3-11. Connect power cord to the front panel connector.

WARNING

Always connect power cord to a properly grounded 3-wire power outlet. Any interruption of the protective earth grounding will cause a potential shock hazard that could result in personal injury.

3-12. Connect the line under test to the instrument as described in the measurement procedures in this section.

3-13. Set LINE switch to ON.

3-14. The HP 4938A has the following signaling and measuring capabilities:

a. Ring Simulator

- Send ring voltage
- Terminate and measure ring voltage
- Test for ring trip
- b. Loop Simulator
 - Loop start
 - Measuring loop current
 - Ground start
- c. Battery Simulator

d. Four Wire Circuit Testing

- 4-wire access
- Ring simulation on 4-wire circuits
- Battery simulation on 4-wire circuits
- 4-wire transmission testing

3-15, OPERATING PROCEDURES

3-16, Ring Simulator (see figure 3-1)

3-17. The ringing voltage generator is used to verify the operation of a ringer or ringing detector in an Off Premises Extension (OPX). The generator provides 86 Vrms, at either 20 Hz or 30 Hz, superimposed on -48 Vdc with a 2 second on and 4 second off duty cycle. When the OPX goes off hook or a loop closure is sensed, the ringing will stop (ring trip) and the OFF HOOK indicator will be lighted.

3-18. Sending Ring Voltage

WARNING

The TERMINATE CIRCUIT Jack has live ring voltage on it when the circuit is being tested.

a. Connect the circuit under test to the TERMINATE CIRCUIT Jack (7).

b. Select the RING VOLATGE (2) frequency of either 20 or 30 Hz.

- c. Press the VOLTAGE SIMULATE (4) pushbutton to begin ringing.
 - 1. Ring voltage will be impressed on the circuit under test if that circuit is open for dc current.
 - 2. The OFF HOOK LED (3) should be off until a dc loop is closed on the far end,
 - 3. When a dc loop is closed on the circuit and the loop current is greater than 17 mA, the OFF HOOK LED (3) will light and ring voltage will stop within 200 ms. Battery will remain on the circuit.
 - 4. Ringing will not restart if the dc loop is removed.
 - 5. To restart the ring, release the VOLTAGE SIMULATE (4) pushbutton to the up position. Then, press the pushbutton to the down position.
 - 6. Ringing will not restart if the dc loop is still closed.

3-19. Terminating and Measuring Ring Voltage

3-20. The ringer termination is a terminating impedance that simulates the load of three ringers or Ring Equivalent Number 3. The load is used when measuring the ringing voltage from a remote generator. This voltage can be measured across the VOLTS and COM binding posts.

a. Connect the circuit under test to the ORIGINATE CIRCUIT Jack(16).

3-20. (cont'd)

b. Press the REN3 (22) pushbutton.

1. This will terminate the circuit with ring equivalent number 3 load.

WARNING

The Voltage Monitor may have live ring voltage.

2. The MONITOR VOLTS (19) binding posts are also placed across the REN3 load.

c. To measure ring voltage, connect a multimeter across the MONITOR VOLTS (19) binding post and the MONITOR COM (19) binding post.

3-21. Testing for Ring Trip

- a. With the circuit under test terminated with REN3 and ring voltage present from the far end, press the TRIP (21) pushbutton to cause a ring trip closure
- b. If ring trip capability of the far end generator is operational, the ring voltage being measured in step 3-20, c will stop.

3-22. Loop Simulator

3-23. Loop signaling margin tests are performed using a dc loop closure network internal to the HP 4938A. The circuit loop current can be measured across the AMPS and COM binding post using a multimeter. The HP 4938A can originate either loop start or ground start on both two-wire and four-wire circuits. The four-wire circuit must be connected to the Simplex Transformer.

3-24. Loop Start Originate

a. Connect the circuit under test to the ORIGINATE CIRCUIT (16) Jack.

b. Press the LOOP (20) pushbutton to cause a loop closure on the circuit,

c. The circuit can be monitored for a dial tone by connecting a lineman's handset (butt-in) across the line.

Note

The loop circuit can momentarily be broken by pressing the LOOP I pushbutton. The multimeter must not be connected to the Current Monitor binding posts.

The TRIP pushbutton may be used to affect the loop closure. The loop resistance in this case is 330 ohms.

The TRIP and the LOOP pushbuttons may be used together for loop closure. The resistance in this case is 187 ohms.

3-25. Measuring Loop Current

a. Connect a multimeter across the MONITOR COM (19) and AMPS (19) binding posts.

b. Set the multimeter for do current, 100 mA range.

- c. Press the LOOP (20) pushbutton to cause a loop closure on the circuit.
- d. Press the LOOP I (17) pushbutton. The MONITOR COM (19) and AMPS (19) binding posts are placed in series with the circuit while the LOOP I (17) pushbutton is held down.

3-26. Ground Start Originate

•

a. Connect the circuit under test to the ORIGINATE CIRCUIT (16) Jack.

b Press the LOOP (20) pushbutton.

c. Momentarily press the GND START (18) pushbutton.

Note

A ground will be placed on the ring conductor of the ORIGINATE CIRC''IT Jack through the margin test resistance.

d. The circuit can be monitored for dial tone by connecting a linesman's handset (butt-in) across the line.

3–27. Battery Simulator

a. Connect circuit under test to the TERMINATE CIRCUIT (7) Jack.

- b. With the SIMULATE (4) pushbutton in the up position (BATT), -48 Vdc will be applied to the TERMINATE CIRCUIT (7) Jack.
 - The OFF HOOK LED (3) should be off until a dc loop is closed on the far end.
 - When a dc loop is closed on the circuit and the loop current is greater than 17 mA, the OFF HOOK LED (3) will go on.
- c. The battery simulator can be reversed by pressing the T/R REV (5) pushbutton switch.
- d. The battery simulator may be removed from the circuit by pressing the OPEN (6) pushbutton switch.

PERFORMANCE TESTS

MODEL 4938A PERFORMANCE TEST

77

3-7

3-28. Four Wire Circuit Testing

3-29. The Simplex Transformer leads provide connections for signaling and transmission testing in four wire circuits on the network side of the network interface. Loop start signaling and ground start signaling can be enabled using the internal loop signaling network. Busy conditions can be enabled by using the internal battery simulator.

3-30, 4 Wire Loop Start - Originate

a. Move the Simplex Lead Patch Switch (8) to the down position.

b. Connect the 4 wire circuit under test to T/R (11) and T1/R1 (14) jacks on the TELCO side of the SIMPLEX TRANSFORMER (10),

c. Press the LOOP (20) pushbutton to cause a loop closure on SX/SX1 (9) jack.

Note

The loop circuit may be momentarily broken by pressing the LOOP I pushbutton. The multimeter must not be connected to the COM and AMPS binding posts.

The TRIP pushbutton may be used to affect the loop closure. The loop resistance in this case is 330 ohms

The TRIP and the LOOP push buttons may be used together for loop closure. The resistance in this case is 187 ohms.

3-31. Measuring Loop Current Across SX/SX1

a. Move the Simplex Lead Patch Switch (8) to the down position.

b. Connect the 4 wire circuit under test to T/R (11) and T1/R1 (14) Jacks on the TELCO side of the SIMPLEX TRANSFORMER (10).

c. Connect a Multimeter across the MONITOR COM (19) and AMPS (19) binding posts.

d. Set the Multimeter for dc current, 100 mA range.

e. With the LOOP (20) pushbutton pressed in, press the LOOP I (17) pushbutton. The COM and AMPS (19) binding posts will be placed in series with the circuit.

Note

Note that if a linemen's handset (butt-in) is used to monitor dial tone through the AMPS and COM binding posts, the dial tone will be interrupted while the LOOP I switch is held down.

- 3-32. 4 Wire Ground Start Originate
- a. Move the Shipplex Lead Patch Switch (8) to the down position.
- b. Connect the 4 wire circuit under test to T/R (11) and T1/R1 (14) jacks on the TELCO side of the SIMPLEX TRANSFORMER (10).
- c. Press the LOOP (20) pushbutton.
- d. Press the GND START (18) pushbutton momentarily. A ground will be placed on the ring conductor or SX1 lead of the SX/SX1 (9) jack through the margin test resistance.
- 3-33, Other 4 Wire Access
- a. 4-wire access using signaling not available in the HP 4938A can be accomplished by connecting the source of external signaling to the SX/SX1(9) jack.
- b. Move the Simplex Lead Patch Switch (8) to the OPEN (middle) position to disconnect the terminate or originate functions from the Simplex Leads.
- 3-34, Ring Simulation on 4 Wire Circuits
- a. Move the Simplex Lead Patch Switch (8) to the up position.

1,

- b. Repeat steps 3-16 through 3-21.
- 3-35. Battery Simulation on 4 Wire Circuits
- a. Move the Simplex Lead Patch Switch (8) to the up position.
- b. With the SIMULATE (4) pushbutton in the up position, -48 Vdc will be applied to the SX/SX1 (9) jack.

Note

The OFF HOOK LED will be off until a dc loop is closed on the far end. When a dc loop is closed on the circuit and the loop current is greater than 17 mA, the OFF HOOK LED will go on.

c. The battery simulator may be reversed by pressing the T/R REV (5) pushbutton.

d. The battery simulator may be removed from the circuit by pressing the OPEN (6) pushbutton.

- 8-36. 4 Wire Transmission Testing
- a. Connect the 4 wire circuit under test to T/R (11) and T1/R1 (14) jack on the TELCO side of the SIMPLEX TRANSFORMER (10).
- b. Connect the Transmission Impairment Measuring Set to TRMT and RCV Jacks on the test side of the Simplex Transformer.
- c. To use loop start signaling perform step 3-24.
- d. To use ground start signaling perform step 3-26.
- e. When signaling is complete, perform the necessary transmission tests.

3-37, SYSTEM CONFIGURATIONS

Note

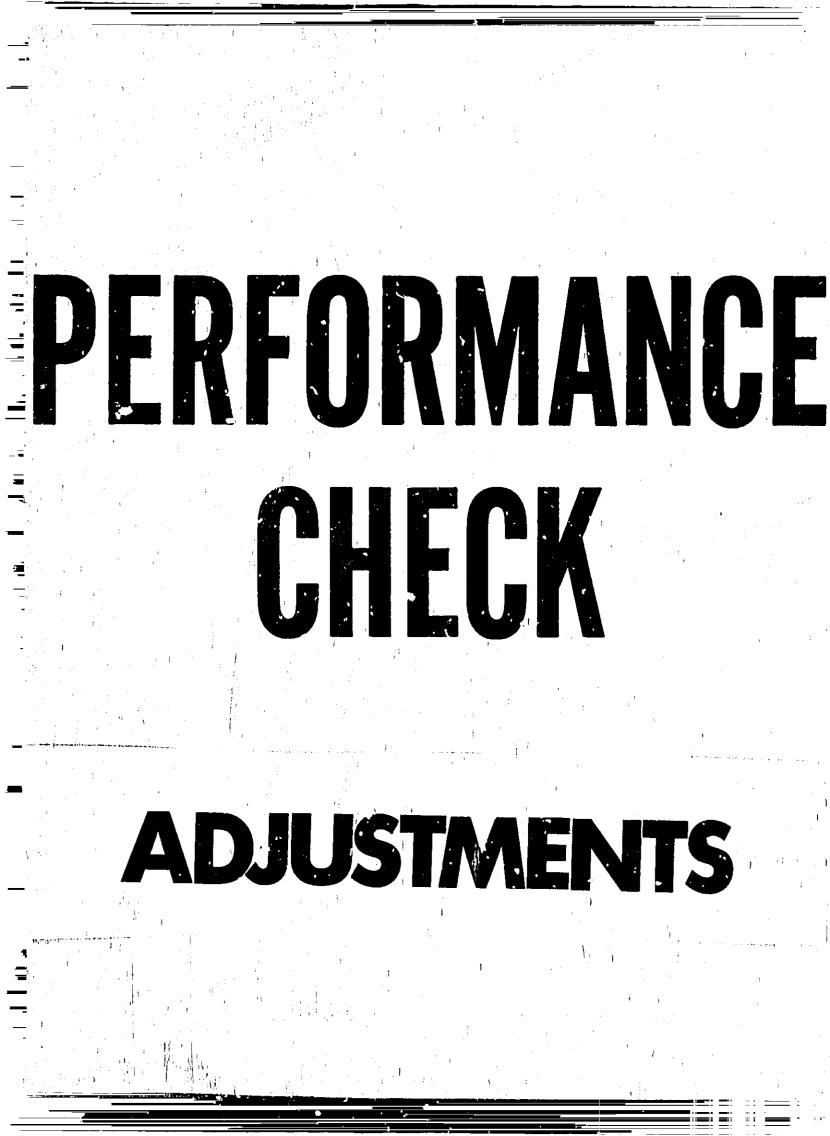
The HP 4935A, HP 4937A, and the HP 4945A Transmission impairment Measuring Sets (TIMS) can be used in a 4 wire environment with the aid of the HP 4938A. Because signaling with the TIMS requires the use of one of the two circuit jacks, combining the TIMS with the signaling and 4 wire access capabilities of the HP 4938A, frees both of the TIMS's circuit jacks for transmission testing.

3-38, Using the HP 4938A with the HP 4937A TIMS

3-39. 4 Wire Transmission Testing Using the HP 4938A with the HP 4937A TIMS.

- a. Connect the 4 w. 3 circuit under test to T/R (11) and T1/R1 (14) jack on the TELCO side of the SIMPLEX TRANSFORMER (10).
- b. Connect the HP 4937A TIMS to TRMT (12) and RCV (13) jacks on the test side of the SIMPLEX TRANSFORMER (10).
- c. To use loop start signaling perform step 3-24.
- d. To use ground start signaling perform step 3-26.
- e. When signaling is complete, perform the necessary transmission tests.

3-4C. Using the HP 4938A with the HP 4935A TIMS or the HP 4945A TIMS


3-41. 4 Wire Transmission Testing Using the HP 4938A with the HP 4935A or HP 4945A.

a. Connect the 4 wire circuit under test to T/R (11) and T1/R1 (14) jack on the TELCO side of the SIMPLEX TRANSFORMER (10).

3-41. (cont'd)

辺

- b. Connect the HP 4935A or HP 4945A TIMS to TRMT (12) and RCV (13) jacks on the test side of the SIMPLEX TRANSFORMER (10).
- c. To use loop start signaling perform step 3-24.
- d. To use ground start signaling perform step 3-26.
- e. When signaling is complete, perform the necessary transmission tests.

=:_

J.

4-1

SECTION IV

PERFORMANCE TESTS

AND

TROUBLESHOOTING

4-1. INTRODUCTION

4-2. The procedures in this section test the instrument's electrical performance using the specifications in table 1-1 as the performance standards. All tests can be performed without access to the interior of the instrument. These tests can be used for incoming inspection verification. If the instrument should fail any test, the suspected fault or troubleshooting aid are also included along with the test procedure. There are no internal adjustments in the HP 4938A.

4-3. EQUIPMENT REQUIRED

4-4. Equipment required for the performance tests is listed in the Recommended Test Equipment table in Section I. Any equipment that satisfies the critical specifications given in the table may be subsituted for the recommended model(s).

4-5. TEST RECORD

4-6. Results of the performance test may be tabulated on the Test Record at the end of the procedures. The Test Record lists all of the tested specifications and their acceptable limits. The results recorded at incoming inspection can be used for comparison in periodic maintenance and troubleshooting and after repair or adjustment.

4-7. CALIBRATION CYCLE

4-8. This instrument requires perodic vertication of performance. Depending on the use and environmental conditions, the instrument should be checked using the performance test every six months. Performance tests should also be made following repair. MODEL 4938A PERFORMANCE TEST

PERFORMANCE TESTS

4-9, PERFORMANCE TESTS

Т

4-10, Reset

EQUIPMENT:

none

4-2

1. On the HP 4938A set:

Set LINE..... ON

2. The red CIRCUIT FAULT indicator should be on for less than 1 second, then turn off.

Troubleshooting aid

1. If the CIRCUIT FAULT indicator remains on check the following:

a. Cable A4W1 to A2J3 (see figure 6-1) connection is not making proper contact and the power supplies are not properly loaded.

 $\mathbf{1}_{\perp}$

b. An external voltage is connected to the TEST RCV jack that is greater than 30 volts.

4-11. Fower Supply Voltage Checks

EQUIPMENT:

Digital Multimeter HP 3478A

1. On the HP 4938A set:

VOLTAGE SIMULATE, BATT

2. On the Digital Multimeter set:

POWER.,.... ON FUNCTION..... DC VOLTS

3. Connect the digital multimeter across the HP 4938A test points and verify the voltages as listed in table 4-1.

TEST POINT CONNECTION	DC VOLTAGE SHOULD BE	TYPICAL RIPPLE
2 and 3	48 +/-2 volts	< 0.5 Vrms
2 and 7	48 +/-2 volts	< 0.5 Vrms
6 and 7	40 +/-2 volts	< 0.5 Vrms
5 and 8	5 +/-0.5 volts	< 0.5 Vrms
5 and 9	-5 +/-0.5 volts	< 0.5 Vrms
4 and 5	5 +/-0,5 volts	< 0.5 Vrms

Table 4-1. Power Supply Voltage Measurements

Troubleshooting aid

1. The typical ripple (with loading or with 10k load across voltmeter) on these power supplies is less than 0.5 Vrms and is usually 0.1 to 0.2 Vrms.

MODEL 4938A PERFORMANCE TEST

PERFORMANCE TESTS

4-12. Simplex Transformer

EQUIPMENT:

Signal Generator HP 3336B Digital Voltmeter HP 3456A 600-ohm termination

1. Connect equipment as shown in figure 4-1.

2! Set HP 4938A LINE power to ON.

3.'On the Signal Generator set:

·	POWER	ON
	FREQUENCY	
	AMPLITUDE	0 dBm

4. On the Digital Voltmeter set:

 POWER.....
 ON

 FUNCTION......
 AC volts

 AUTOZERO......
 JN

 RANGE......
 AUTO

 TRIGGER......
 INTERNAL

5. Connect the digital voltmeter across the signal generator output. Press the STORE Y (8) pushbutton and the math (9) 20 LOG X/Y pushbutton.

,4-5

PERFORMANCE TESTS

4–12. Simplex Transformer (cont'd)

- 6. Disconnect the digital voltmeter from the signal generator (at the HP 4938A connection) and reconnect to the HP 4938A TRMT tip and ring Jack. The insertion loss at 1004 Hz should be less than 1.0 dB.
- 7. Sweep the signal generator from 200 Hz to 4000 Hz. The difference in level should be less than 0.5 dB,
- 8. Connect the digital voltmeter across the signal generator output. Press the STORE Y (8) pushbutton and the math (9) 20 LOG X/Y pushbutton.
- 9. Disconnect the digital voltmeter from the signal generator and reconnect to the HP 4938A TELCO RCV tip and ring jack. The insertion loss at 1004 Hz should be less than 1.0 dB.
- 10.Sweep the signal generator from 200 Hz to 4000 Hz. The difference in level should be less than 0.5 dB.

4-13, Continuous 20 Hz Ringing

EQUIPMENT;

Oscilloscope HP 1740A Digital Voltmeter HP 3456A Digital Multimeter HP 3478A

1. On the HP 4938A connect the TERMINATE CIRCUIT jack to the ORIGINATE CIRCUIT jack.

2. Connect the digital voltmeter to the VOLTS and COM binding posts on the HP 4838A.

3. Connect the oscilloscope to the HP 4938A TERMINATE CIRCUIT jack ring (tip is a reference).

l.

4. Connect the digital multimeter across the HP 4938A TERMINATE CIRCUIT tip to ring.

5. On the Oscillocope set:

INPUT..... 10 TO 1 probe VERTICAL..... 5 V/DIV HCRIZONTAL..... 10 ms/DIV

6. On the Digital Multimeter set:

POWER..... ON FUNCTION..... DC volts

7. On the Digital Voltmeter set:

FUNCTION	AC volts
AUTOZERO,	ON '
RANGE,	AUTO
TRIGGER	INTERNAL

8. On the HP 4938A set:

Power	* * * * *	*****	* * * * * * * * * * * * * *	ON
			* * * * * * * * * * * * * *	
			* * * * * * * * * * * * * *	
			* * * * * * * * * * * * *	

4-6

4-7

4-13. Continuous 20 Hz Ringing (cont'd)

9. Set the HP 4938A Ring jumper (JU1) into the continuous ring position (T).

10. The amplitude of the signal displayed on the digital voltmeter should be from 82.7 to 90.3 Vrms.

11. Change the mode on the digital voltmeter from AC volts to DC volts. The amplitude of the signal displayed on the digital voltmeter should be < 50 mV.

12. The amplitude of the signal as shown on the digita' multimeter should be 48.0 +/- 2.0 volts.

13. The ON/OFF signal time as seen on the oscilloscope should be 25.0 +/-2.5 ms.

PERFORMANCE TESTS

4-14. Continuous 30 Hz Ringing

EQUIPMENT:

Oscilloscope HP 1740A Digital Voltmeter HP 3456A Digital Multimeter HP 3478A

1. On the HP 4938A connect the TERMINATE CIRCUIT jack to the ORIGINATE CIRCUIT jack.

2. Connect the digital voltmeter to the VOLTS and COM binding posts on the HP 4838A.

3. Connect the oscilloscope to the HP 4938A TERMINATE CIRCUIT jack tip (ring is a reference).

4. Connect the digital multimeter across the HP 4938A TERMINATE CIRCUIT tip to ring.

1

5. On the Oscillocope set:

6. On the Digital Multimeter set:

POWER..... ON FUNCTION.... DC volts

7. On the Digital Voltmeter set:

FUNCTION..... AC volts AUTOZERO..... ON RANGE.... AUTO TRIGGER..... INTERNAL

8. On the HP 4938A set:

Power	ON
VOLTAGE	RING
RING,	
CIRCUIT,	
RINGER LOAD	

4-8

. 1

PERFORMANCE TESTS

4-14. Continuous 30 Hz Ringing Check (cont'd)

9. Set the HP 4938A Ring jumper (JU1) into the continuous ring position (T).

- 10. The amplitude of the signal displayed on the digital voltmeter should be from 82.7 to 90.3 Vrms.
- 11. Change the mode on the digital voltmeter from AC volts to DC volts. The amplitude of the signal displayed on the digital voltmeter should be < 50 mV.

12. The amplitude of the signal as shown on the digital multimeter should be 48.0 +/- 2.0 volts.

13. The ON/OFF signal time as seen on the oscilloscope should be 16.7 ± 1.0 ms.

MODEL 4938A PERFORMANCE TEST

PERFORMANCE TESTS

4-15, Trip Point Voltage

EQUIPMENT:

4-10

Power Supply HP 6200B 2.38k ohm Termination 2.756k ohm Termination

1. On the HP 4938A set:

Power,.... ON SIMULATE..... BATTERY CIRCUIT.... NORM RINGER LOAD..... REN3

2. On the HP 4938A connect the TERMINATE CIRCUIT jack to the ORIGINATE CIRCUIT jack.

3. Jumper JU1 should be in the normal position (N).

- 4. Connect the 2.756k ohm termination into the HP 4938A TERMINATE CIRCUIT. The TRIP indicator should not light.
- 5. Connect the 2.38k ohm termination into the HP 4938A TERMINATE CIRCUIT. The TRIP indicator should be lighted.

6. Diconnect all leads and press the SIMULATE RING pushbutton on the HP 4938A.

7. Connect the Power Supply from the TERMINATE CIRCUIT tip to the GND connection.

8. Increase the output voltage on the power supply until the FAULT indicator is lighted. The voltage indicated should be > 30 volts.

PERFORMANCE TESTS

}

MODEL 4938A FERFORMANCE TEST

4-16. Duty Cycle

EQUIPMENT:

=

١

Oscilloscope HP 1740A

1. On the HP 4938A set:

Power..... ON SIMULATE..... PING

2. On the Oscilloscope set:

3. Connect the HP 4938A TERMINATE CIRCUIT Ring to the oscilloscope for signal and Tip as reference.

4. Observe that the ring signal displayed on the oscilloscope is ON for 2 seconds and OFF for 4 seconds.

4-11/(4-12 blank)

115

· · · ·	Table 4-2. Performance			
Hewlett-Pac	kard Model 4938A Network Circuit Ac	cess Test Set		
Serial No.				
Tested By				
Repair Orde	r No.			
Recommended	Calibration Interval 6 Month I	nterval		
Date				
····	[·	<u> </u>	
Paragraph			Results	
Number	Test	Mintmum	Actual	Maximu
4-12	Simplex Transformer Transmit side Insertion loss at 1004 Hz	0.0 dB		1.0 dB
	Flatness (difference 200 Hz to 4000 Hz)	0.0 dB		0.5 dB
1	Simplex Transformer Receive side Insertion loss at 1004 Hz	0.0 dB		1.0 dB
, I	Flatness (difference 200 Hz to 4000 Hz)	0.0 dB	·	0.5 dB
4-13	Continuous 20 Hz Ringing	82.7 Vrms	······	90.3 Vrn
	Continuous 20 Hz de Offset	0.0 mV	<u> </u>	50.0 mV
	On/Off Signal Time	22.5 ms		27.5 ms
4-14	Continuous 30 Hz Ringing	82.7 Vrms		90.3 Vrm
	Continuous 30 Hz dc Offset	0.0 mV	<u> </u>	50.3 mV
-	On/Off Signal Time	15.7 ms		17.7 ms
	-	1		

Į

4-12A

MODEL 4938A

5-1/(5-2 blank)

SECTION V ADJUSTMENTS

5-1. INTRODUCTON

7

5-2. The HP 4938A is adjusted and calibrated at the factory. The instrument does not contain any operator adjustments.

PARTS

L ST.

SECTION VI

REPLACEABLE PARTS

6-1. INTRODUCTION

7

6-2. This section contains information for ordering parts. Table 6-1 lists the abbreviations used in table 6-3, table 6-2 is the Manufacturer's Code List, and table 6-3 lists the replaceable parts. Figures 6-1 is illustrated parts breakdown.

6-3. REPLACEABLE PARTS LIST

6-4. Table 6-3 lists the replaceable parts in alphanumerical order, included is the description, quantity (total number used in the instrument), the HP Part Number and the manufacturer's part number.

6-5. ORDERING INFORMATION

6-6. To order a part listed in the replaceable parts table, quote the Hewlett- Packard part number, Indicate the quantity required, and address the order to the nearest Hewlett-Packard Sales Office.

-

		· · · · ·	REFE	RENCE DESIGNATIONS)	
A	E	assembly	J	= electrical connector	TB'	=) terminal board
B	Ш	fan; motor		Istationary portion); Jack	TP	= test point
BT	Ħ	battery	L .	= coll: inductor	U	= integrated circuit;
С	œ	capacitor	MP i	 misc, mechanical part 		microcircuit
CR	Ħ		P	= electrical connector	V 1 1	= electron tube; glow lamp
		varactor	$\Lambda = 1$	(movable portion); plug	VR	= voltage regulator;
ԵԼ	m	delay line	[`o 'i	Transistor; SCR;		breakdown diode
DS	8	annunciator; lamp; LED	· ·	triode thyristor	W	F cnble
E	62	misc electrical part	R	= resistor	X	st socket
F	4	fuse	RT .	= thermistor	Y \	= crystal unit (piezo-
FL	~	filter		= switch; jumper		electric or guartz)
н	#	hardware	T dije s	= transformer	1.4	
				ABBREVIATIONS		
A	2	amperes	DIA	≈ diameter	ĸ	⊯ kilo (103), kilohm
AC	æ	alternating current	L	= duat in-line package	10	A CONTRACT OF A
ADD	82			= double-pole, double-throw	LED	l= light emitting diode
ADJ	=	adjust, adjustment	1	= double-pole, single-throw	LET	∀ left
AL	Ħ	aluminum	1 2 ·	= drive	LG	= long
AR	Ē	as required	DAVR	driver		= lefthand
ASM	Ħ	algorithmic state machine		- display	LKWR	= ibckwasher
ASSY	e	assembly		= diode-transistor logic	LP	··· low pass
		٠ ١			LS	= low power Schotiky
в	E	buse	E ·	= emitter	LSB	= least significant bit
BCD	Ħ	binary coded decimal	ECL	# emitter-coupled logic		iener eignitieent ait
BeCu	E	beryllium copper			м	= milli (10-3), male,
BIN	=	binary		 encopsulated 		mega (105), megohm
BLK	=	black		= external	MET FLN	
BLU	-	blue		= extractor	MET OX.	
BP	=	band pass			MHZ	megahertz '
BRN	u.	brown	F	= female, farads	MFR	= manufacturer
BRS	æ	brass	°FF , ∘	= flip-flop	MINTR	ir miniature
BTU	=	British thermal unit	FLM -	= film	MISC	= miscellaneous
				= front	мом	= momentary
С	=	collector ,	FXD	= fixed	MOS	= metal oxide semiconductor
CATH	=	cathode	1		MSB	most significant bit
ccw	æ	counterclockwise	G	≠ giga (109)	мтсно	matched
CD PL	æ	cadmium plate	GE 🕫	≠ germanium	MTG	mounting i i
CER	m	ceramic	GL	= glass	MTLC	= metallic
CERMET	Ħ	ceramic met ilm		= ground(ed) 10		,
CKTS	C 1	circuits	GP 4	General Purpose	N	anano (10-9)
C FLM	÷	carbon film	GRA -	•	N.C.	= normally closed, no
CLK	tz.	clock	GRN ⊧	u)		connection
CLR	=	clear		u ,	NE	
CMOS	=	complementary metai	н 🛛	= henries	NO.	= number
		oxide semiconductor logic	HDW =		N.O.	 normaliy open i
сом	Ë	common		 hexagon, hexagonal, six 	NP	 normany open No Polarity
COML	Ħ	commercial	HP a		NPN	 negative-positive-negative
COMP	=	composition	HR =		NPO	 negati e-positive zero (zero)
OMPL	E	complete		= Hertz		remperature coefficient)
OND	Ħ	conductor			NRFR	iot.recommended for
ONN	E	connector	IC =	 integrated circuit 		field replacement
ONT	æ	contact	lD ⊧		NS	 hormally shorting,
PPSN	, m	compression	IF =			 normany shorring, nanosecond
TL		complementary-	IN. =	• •	NSR	 not separately replaceable
· · - ·		transistor logic	INCAND =		NSK	
:w	ŧ	clockwise	INCL =		1	nylon '
* * *	-		INSU'. =		opp	an and a lan an an and a set
)	n.	diameter	INSU') =		OBD	= order by description
) C	-	direct current	INT =		OD	= outside diameter
/ .	-	where constitute	1141 % =	internal	ORN	🖛 orange 👘 👘

i ,

ABBREVIATIONS								
P ^{il} ⊨ (pico (10-1 2)	RVT	e	rivet	TRN	=	turn	
PC =	printed circuit	RWV	E	reverse working voltage	TTL	=	transistor-transistor logic	
	printed-circuit assembly			,	ТҮР	æ	typical	
PF =	picofarad	S	Ħ	second				
PIV 😐	Peak Inverse Voltage	58	5	slaw blow	U(μ)	H#	micro (10-6)	
PK 🖷	peak	SCR	H=	silicon controlled rectifier	UF	Ħ	microfered	
	panel	SE	Ξ.	selenium	US	đ	microseconds	
PNP =	positive-negative-positive	SGL	=	single				
P-P = 1	peak-to-peak	SI	œ	silicon	V	ti ti	voit(s)	
	parts per million	SHK	, a '	shank	VAR		variable	
POLYC =	polycarbonate	SIP	<u>م</u>	singte in-line package	vco	a.	voltage controlled	
POLYE =	polyethylene	SKT	#	socket			oscillator	
POLYSTY =	polystyrene	SLDR	c	solder	VDCW	₽;	direct current working volts	
PORC = j	porcelain	SPCG	c:	spacing	VIO,	#	violet	
POSN =	position(s)	SPDT	đ	single-pule, double-throw	VNP	12	no polarity voltage	
POZI = I	pozidrive	SPST		single-pole, single-throw				
	peak reverse voltage	SST	' :::	stainless-steel	W	5	watts	
PWV , '= i	peak working voltage	STL	æ	steel	WT	E ,	weight	
P/Ó ∖⊫ j	part of	· 5Z	æ	size	ww	=	wirewound	
· • • ·					WHT	-	white	
R ≓ I	ring of the second s	Ţ	₽	tip	WIP	a	wiper a	
RAM ≔ I	random access memory	ŤA –	e.	tantalum	WIV	•	working inverse voltage	
	read only memory	IEL :	Ξ	telephone	WSHR	E	washer	
	rectifier >	T.C. 1	: ::	Temp. Compensated,	1. A.			
	radio frequency	10 A		temp. coefficient	х	· #	times, multiple	
	right hand 🕤 👘 🔪	THK:)S	₹i	thickness				
RMS ⁱ r≖ i	root-mean-square	TI	e,	titanlum	YEL	·‡	yeilow	
RND 🔍 I	round a all a	TGL	ā	toggle				
	right hand,	THD	Π	thread	ZNR	13	zener	
	resistor-transistor logic	THK	<u>85</u>	thick	1.1			
	retainer	TOL	₩	tolerance	¢	, ± .'	phi, phase	
RTRY 👘 😐 🗍	rotary	TRMR	=	trimmer	·.			
t di								

 $\frac{h}{h}$

Table 6-1. Reference Designations and Abbreviations (Continued)

Í

ļ

1

ļ

MFR NO,	MANUFACTURER NAME	ADDRESS	ZIP CODE
C0633	RIFA	BROMA	
00000	ANY SATISFACTORY SUPPLIER	1	
01,121	ALLEN-BRADLEY CO	MILWAUKEE WI	53204
01295	TEXAS INSTR INC SEMICOND CMPNT DIV	DAL'AS TX	75222
04713	MOTOROLA SEMICONDUCTOR PRODUCTS	PHOENIX AZ	85008
07263	FAIRCHILD SEMICONDUCTOR DIV	MOUNTAIN VIEW CA	95042
19701	MEPCO/ELECTRA CORP	MINERAL WELLS TX	76067
24546	CORNING GLASS WORKS (BRADFORD)	BRADFORD PA	16701
27014	NATIONAL SEMICONDUCTOR CORP	SANTA CLARA CA	95051
28480	HEWLETT-PACKARD CORP HQ	PALO ALTO CA	94304
56289	SPRAGUE ELECTRIC CO	NORTH ADAMS MA	01247
65388	SWITCHCRAFT INC	CHICAGO IL	60630

Table 6-2. Manufacturer Code List

6-4

Y

х Полония и полония и полония и полония полония полония и полония и полония и полония и полония и полония и полония полония и по полония и по полония и полония полония и по

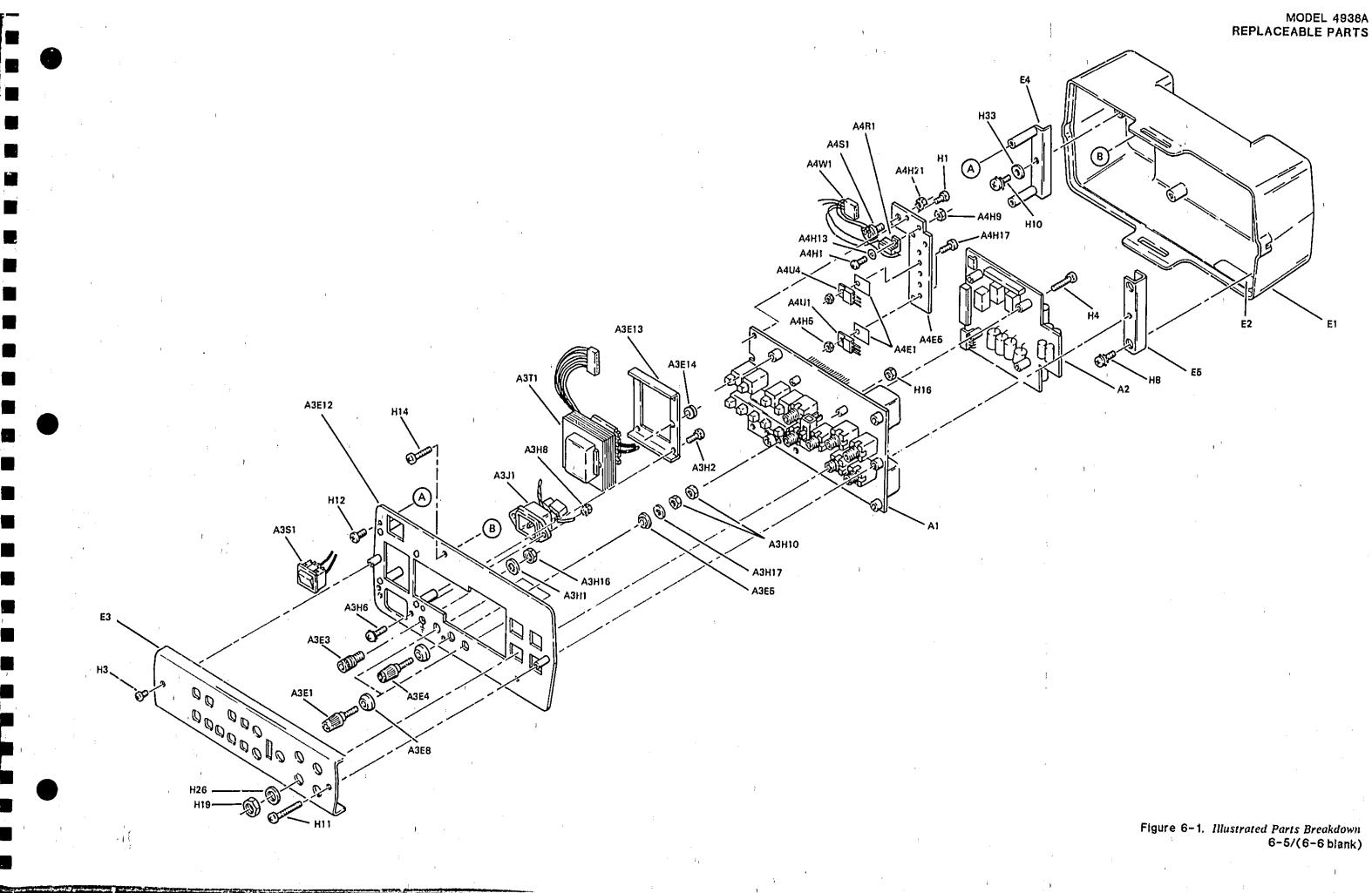


Table 6-3. Replaceable Parts

٠

ŝ

1

				Table 6-3. Replaceable Parts		P
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1	64930-69001	4	4	MAIN PC BD AGGY	29439	D4938-600D3
A)C) A)C2 A)C3 A)C4 A)C5	0160-0576 0160-0576 0167-3870 0169-0576 0169-0576 0360-0576	0000 00	18 2	EAPACITOR FXD .107 +-202 GOUDE CER CAPACITOR-FXD .107 +-202 GOUDE CER EAPACITOR-FXD 1000PF +-202 GOUDE CER CAPACITOR-FXD .107 +-202 GOUDE CER CAPACITOR-FXD .107 +-202 GOUDE CER	20480 20480 20488 20488 20480 20480	0160-0576 0160-0576 0160-3170 0160-3576 0160-0576
A1C6 A1C7 A1C8 A1C7 A1C7 A1C7 A1C7	0100-0197 0160-0576 0160-0576 0160-0141 0160-2015	80 02 1	3	CAPACITOR-FYD 2,2UF+-10% 2000C TA CAPACITOR-FXD .1UF +-20% BOVDC CER CAPACITOR-FXD .1UF +-20% BOVDC CEF CAPACITOR-FXD .4UF 10% 2000 CAPACITOR-FXD 1001F20% 1000C TA	56209 28400 26480 20480 20480 20480	150D225¥9020A2 0160-0576 0160-0576 0160-6141 0100-2615
A1C11 A1C12 A1C13 A1C13 A1C14 A1C15	0160-4663 0160-3079 0160-4663 0160-0576 0160-0576	77700	2 7	CAPACITOR FXD C.CUF +00-20% 100VDC CER CAPACITOR FXD .0107 +-20% 100VDC CER CAPACITOR FXD C.207 +00-20% 100VDC CER CAPACITOR FXD .10F +-20% 50VDC CER CAPACITOR FXD .10F +-20% 50VDC CER	28480 20480 28400 28400 28400 28400	0160-4663 0160-3077 0160-4663 0160-6576 0164-6576
A1C16 A1C17 A1C18	0169-0576 0160-0576 0169-0374	5 5 1	ı	CAPACITOR-FXD JUF +-20% 50VDC CEP CAPACITOR FXD JUF +-20% 50VDC CCP CAPACITOR-FXD JOUT+-10% POVDC TA	201480 20400 54269	0140-0576 0160-0576 1500104×902082
A1CP3	1901-0050,	3	₩.,	DIDDE BUITCHING DOV 200MA PNG DO-35	20480	1701-0050
A103261 A105409	1990-0485 1990-0486	5		LED-LAMP LUM-INT=BODVCD 11430MA-MAX LED-LAMP LUM-INT=IMCD IT=20MA-MAX DVR+DV	20400 20400	50D2-49D4 50D2-40D4
A1 J1 A1 J205 A1 J209 A1 J210 A1 J210	1251-7855 1251-2477 1251-5770 1251-5770 1251-3677 ,251-3677	97977	1 6 1	CONN POST TYPE .105 PIN-GPCS AD CONT Connecidr-tel Jack 2-ckt .25 Sik Dja Connecidr-tel Jack 2-ckt .25 Sik Dja Connecidr-tel Jack 2-ckt .25 Sik Dja Connecidr-tel Jack 2-ckt .25 Sik Dja	20460 28400 82389 28400 28400 28400	1751 7075 1851-3677 1611-3677 1651-3677 1851 3677
A1J305 A1J309 A1J310	1251 -3677 1251 - 3677 1251 - 3677	7 7 7		CONNECTOR-TEL JACK 2-CKT ,25-CHK-DIA Connector-tel Jack 2-CKT ,25-CHK-DIA Connector-tel Jack 2-CKT ,25-CHK DJA	213400 213400 20400	1851-3677 185 -3677 1851-3677
A181 A182 A183 A184 A185	0/58-3155 9890-3155 0757-0442 0757-0442 0757-0442	1 9 9 9 9	65 A	REGIGTOR 4.64K 1% ,125W F TC+0+-10C FEGIGTOR 4.64K 1% ,125W F TC+0+ 10G REGIGTOR 10K 1% ,125W F TC+0+-100 REGIGTOR 10K 1% ,125W F TC+0+-100 PCGIGTOR 10K 1% ,125W F TC+0+-100	24545 24545 24545 24546 24546 24546	C4 1/0-10 A/A1-F C4 1/0-10-4641-1 C4 1/0-10-1000-F C4-1/0-10-1000-F C4-1/0-10-1000-F C4-1/0-10-1002-F
A186 A187 •A187 •A180 A189 A1810	0757-0465 078-3447 0011-3608 0790-3441 0690-0331	647B5	1 1 1	REGIGTOR 100K 12 .1260 F 1C+0+100 HEGIGTOR 422 12 .1260 F 1C+0+100 REGIGTOR 550 0046 60 REGIGTOR 215 12 .1260 F 1C+0+100 REGIGTOR 21.31K .52 .260 F 1C+0+50	24546 24546 20480 24546 24546 19701	FA-378-10-3003 F CA-378-10-4228-F 0837-3680 FA-378-10 P1FR F HFCC074-12-2331-D
AIR11 AIR12	0811-2151 0811-3687	7		REGISTOR 430 12 EM PM TC+0+ P0 Registor 330 Dimg 50	28400 28400	0011-36H7
A16200 A16201 A16203 A16204 A16204 A16207	3181-2124 3101-2124 3181-2124 3181-2124 3181-2124 3181-2767	42555	4	GWITCH-PR DPDT ALTNG ,20A BIBVAC Gwitch PR DPDT ALTNG ,20A BIBVAC Gwitch-PW DPDT ALTNG ,20A BIBVAC Gwitch-PW DPDT ALTNG ,20A BIBVAC Gwitch-Slide	20400 20400 20400 20400 20400 20400	3101-2124 3101-7124 3101-7124 3101-1124 3101-1124 3101-1124
A16300	3101-2766	0	- 1	БИГТСН РБ В БТА	20400	3101-2766
A1T110 A1T410	9100-4403 9100-4403	e D	2	TRANGFORMER TRANSFORMER	28400 211480	¥100-4403 ¥100-4403
A10100 A10102 A10103 A10105 A10105 A10107	1920 - 3001 1020-2922 1020-2922 1020-3081 1020-3184 1020-3185	4 0 4 0 9	3 	IC FF CHOS/74HC D-TYPE POIL-EDGE-TAIG IC GATE CHOS/74HC NAND DUAD D-TAPP IC FF CHOS/74HC D-TYPE POS-EDGE TRIG IC GATE CHOS/74HC AD TPE J-TAP IC GEHMITT-TPIG CHOS/74HC INV HEX	20480 28480 281480 28480 28480 28480	1020-3001 1020-3001 1020-3001 1020-3104 3020-3104 2020-3104
A1U108 A1U405 A1U405 A1U407 A1U409	1820 3603	40464	2 1 1	IC IF ENGG/74HC D-TYPE POG-EDGE TRIG IC ENTR ENGG/74HC FIN AGYNCHED IC ENTR ENGG/74HC DECD GYNCHED IC ENTR ENGG/74HC BIN AGYNCHED IC-NE74HC82N	20480 20480 20480 20400 20400 20400	1920-3083 1920-3189 1020-3189 1020-3189 3020-2389
	0300-1326 1251-6439	51330	042-1	GPACEN PREGS-IN 0.250 IN LG; 0.143 IN GTANDOFF PREGS IN .254 IN LG; 4-40 THD GTANDUFF-PREGS IN .500 IN LDNG; 4-60 Connector IP PIN N POST TYPE JUNPEP-NEM	20400 00500 00500 20400 25400	0200 1265 URDER BY DESCRIPTION URDER BY DESCRIPTION 1275 DATE 1950-0141
	5841-0300 04930-20001	6	7	PUGH RUTTON KNOD PC BOARD MAIN	28400 29400	6741-0300 N4930-20001
	1					
t;			╴ᅳ└			

See introduction to this section for ordering information *Indicates factory selected value

1

i.

6-7

Reference Designation	HP Part Number	Ċ D	Qty	Description	Mfr Code	Mfr Part Number
AR	04730-60002	5	5	PR PE DOARD ABSY	28480	049313-60002
A2C1 A2C2 A2C3 A2C4 A2C5	0140-0141 0140-0141 0140-3260 0140-3508 0140-3508	44875	5	CAPACITOR-FXD .GIUF +-10% 200VDC POLYE CAPACITOR FXD .010F +-10% 200VDC POLYE CAPACITOR-FXD 10000F +%0-10% 104DC AL EAPACITOR-FXD 10F +00 20% 804DC CER CAPACITOR-FXD .SUF +-20% 804DC CER	20400 20480 20480 20480 20480 20480	0160-0161 0160-0161 0104-3208 0160-3308 0160-9576
A7C6 A2C7 A2C8 A2C9 A2C9 A2C10	0100-0197 0140-0576 0100-0197 0160-0576 0160-3508	10 5 0 5 7	i e	EAPACITOR-TXD 2.207+-10% 2000C TA EAPACITOR-TXD .107+-20% 500DC CER EAPACITOR-TXD 2.207+-10% 2000C TA EAPACITOR-TXD .107+-20% B00DC CER CAPACITOR-TXD 107+80-20% B00DC CER	562117 20480 20480 20480 20480 20480	1500223¥1020A2 0160-0576 1500225¥1020A2 0160-0576 0160-3508
A2C11 A2C12 A2C12 A2C13 A2C14 A2C15	0160-0576 0160+0576 0160-0576 0160-0576 0160-0576	10100	3	CAPACITOR-FXD'.1UF +-20% BOVDC CER CAPACITOR-FXD .1UF +-20% BOVDC CER CAPACITOR-FXD .1UF +-20% BOVDC CER CAPACITOR FXD .1UF +-20% BOVDC CER CAPACITOR-FXD 100UF 100V	20480 20480 20480 20480 20480	0140-8576 0169-0576 0140-6576 0140-6576 0148-0576 0148-3500
A2C16 A2C17 A2C16 A2C17 A2C20	0100-2207 0180-2207 0100-3600 01803661 01803661	50140	2 3	CAPACITER FXD 100UF++10% 10VDC TA CAPACITER-FXD 100UF++10% 10VDC TA CAPACITER-FXD 100UF 100V CAP FXD ELCTLT CAP FXP ELCTLT	56267 56289 20400 28400 28400	1540107×74102 1540107×901082 0180-3580 01803561 01803561
A2C21 A2C22 A2C23 A2C24 A2C25	0180 3661 0180-3943 0148-3079 0140-3079 0149-3079	69777	3	CAP FXD ELCTLT EAPACIIOR-FXD 100UF+50-10% COVDC AL CAPACIIOR-FXD .01UF+50% 100VEC CEP EAPACIIOR-FXD .01UF+20% 100VEC CEP CAPACIFOR-FXD .01UF+-20% 100VEC CEP	20480 20400 20400 20400 20400	0180 3661 0180 - 3043 0140 - 3079 0140 - 3079 0140 - 3079
A2C26 A2C27 A2C28 A2C28 A2C29 A2C30	0160-0576 0160-3079 0160-3079 0160-3079 0160-3079 0160-3078	57776		CAPACITOR FXD .10F +-20% BOVDC CER CAPACITOR FXD .01UF +-20% BOVDC CER CAPACITOR FXD .01UF +-20% IOGVDC CER CAPACITOR FXD .01UF +-20% IOGVDC CER CAPACITOR FXD IOGOPF +-20% IOGVDC CER	20400 20400 20400 20400 20400 20400	0160-0576 0160-3879 0160-3079 0160-2879 0160-2878
A2C31	0180-3588	1		CAPACITOR-FXD LODUF LODY	28400	0180-3500
A2CR1 A2CR2 A2CR3 A2CR3 A2CR4 A2CR5	1901-0704 1901-0764 1901-0704 1981-0704 1981-0704 1901-0050	****	7	DIGGE-PWR RECT IN4002 100V IA DD-41 Digde-PWR Rect IN4002 100V IA DD-41 Digde-PWR Rect IN4002 100V IA DD-41 Digde-PWR Rect IN4002 100V IA DJ-41 Digde Gwitching Gov Poora CNS DD-35	01275 01275 01275 01275 01275 28400	1 N4802 1 N4802 1 N4802 1 N4802 1 N4802 1 781 - 0850
A2CR6 A2CR7 A2CR8 A2CR9 A2CR9 A2CR9	1901-0050 1901-0050 1901-0050 1902-0577 1901-0704	3 3 3 3 4	i	DIODE-BUITCHING BOV 200MA ENG DO-35 DIODE-GUITCHING BOV 200MA ENG DO-35 DIODE-GUITCHING BOV 200MA ENG DO-35 DIODE-SUR G.LV GX PD-14 IR+100A DIODE-PUR RECT JH4802 100V 1A DO-41	PD400 20400 20400 20400 20400 01295	1901-0050 1901-0050 1901-0050 1902-059 1902-0599
A2CR31 A2CR32 A2CR33 A2CR33 A2CR34 A2CR35	1901-0704 1901-0704 1901-0731 1901-0731 1901-0731	44777	3	DIDDE-PHR HECT IN4002 100V IA DO-AI DIDDE-PHR RECT IN4002 100V IA DO-AI DIDDE-PHR RECT 400V IA DIDDE-PHR VECT 400V IA DIDDE-PHR RECT 400V IA	41295 01295 28400 28400 28400	1N4802 1N4802 1701 - 0731 1701 - 0731 1701 - 0731
A2CR16 A2CR17 A2CR17 A2CR10	1901-0784 1901-0704 1981-0535	4 4 9	• •	DIDDE-PWR PECT IN4002 100V IA DO-41 Didde Pwr Rect in4002 100V IA DO-41 Didde-6m big bchotiky	01295 01255 20400	1N4002 1N4002 1901-0535
A2DB) A2DB2 A2DB3 A2DB3 A2DB4	1901-0363 1901-0363 1901-0363 1901-0363	1 1 1	٩	DIGCE-FW BRDG 106V IA Digg-FW Brgg 106V IA Digge FW Jrgg 106V IA Digge-FW Brgg 106V IA	20400 20400 20400 20400 20400	1901-0363 1901-0363 1901-0363 1901-0363
AZJ1 A2J2 A2J3	1252-0272 1251-8757 1252+0221	4 4 3	ł	CONN HALE 9 PIN Conn Post Type 2.5-Pin-6PEG 18-Cont Conn Hale 6 Pin	20480 20400 28490	1252-0222 1251-0757 1252-0221
A2K103 A2K103 A2K280	0470-1409 0470-1354 0470-184193	4 0 9	1	RELAY 2C BUDG-COIL 2A 258VAC Relay 2C BUDG-COIL 2A 258VAC Relay	20400 20400 28460	6476-1467 6490-1354 6490-184193
A2L1 A2L2	7140-0210 9140-0219	1	5	INDUCTOR PF-CH-MLD 100UH 5% .166DX,303LG Inductor PF-CH-MLD 100UH 5% .166DX.305LG	20400 20400	9140-0210 9140-0210
AZHOVI Azhovz	48-7-0116 0837-0116	4	¢	VARIGTUP VIN+250FAC ENERGY+20JOULES Varigtor VIN+250FAC Energy+20Joules	213480 20409	0037-0116 0037-0116
A2P3	1212-0223	5	1	CONN-FEMALE 40 PIN	20400	1002-0223
A2R1 A2R2 A2R3 A2R4 A2R5	0278-8820 0678-0020 0757-0416 0757-0416 0757-0416	7777	2 2 1	#CGIGTOR 4.64 (X ,1250 F TC=0+-100 REGIGTOR 4.64 1.2 ,1250 F TC=0+-100 REGIGTOR 511 1X ,1250 F TC=0+-100 REGIGTOR 511 1X ,1250 F TC=0+-100 REGIGTOR 1.47K 1X ,1250 F TC=0+-100	20400 20400 24546 24546 24546 24546	0490 8020 0479-0320 C4~1/8-T0-511R-F C4~1/8-T0-511R F C4~1/8-T0-1471-F
		:				

Table 6-3. Replaceable Parts (Continued)

,

đ

•

Ì

See introduction to this section for ordering information: *Indicates factory selected value

i

and a star inter

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A2R6 A2R7 A2R8 A2R9 A2R9 A2R9	0757-0459 0757-0277 0678-3155 0698-3155 0698-3155	0 1 1 1	1	PEGISION 56.0K 12.1050 F 15-00-100 REGISTOR 3.12K 12.1250 F 15-00-100 RESISTOR 4.64K 12.1250 F 15-00-100 RESISTOR 4.64K 12.1550 F 15-00-100 RESISTOR 4.64K 12.1550 F 15-00-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-5672-F C4-1/8-T0-3161-F C4-1/8-T0-4641-F C4-1/8-T0-4641-F C4-1/8-T0-4641-F
A2R11 A2R12 A2R13 A2R13 A2R14 A2R15	6696-3132 0758-3132 0698-3444 0757-0442 0757-0442	44197	· P 	REGISTOR 261 17 .12 ¹ * TC+0>-100 REGISTOR 261 17 .12 ² * TC+0>-100 REGISTOR 316 17 .12 ² F TC-0>-100 REGISTOR 10K 17 .12 ² F TC+0>-100 REGISTOR 10K 17 .12 ² F TC+0>-100 REGISTOR 7.0K 17 .12 ² F TC+0+-100	24546 24546 24546 24546 24546 24546	C4 1/8-T0-2610-F C4-1/8-T0-2610-F C4-1/8-T0-368-F C4-1/8-T0-1082-F C4-1/8-T0-3602-F C4-1/8-T0-7601-F
A2R16 A2R17 A2R17 A2R18 A2R19 A2R20	0757-0424 0757-0440 0757-0424 0688 8376 0688 8376	77777	2 د	PESIGIUR 1.1K 1% .125W F TC=0+-100 RESIGIUR 7.5K 1% .125W F TC=0+-100 RESIGIUR 1.1K 1.125W F TC=0+-100 PESISTOR 10.5% .25W FC TC=-400/+500 PESISTOR 10.5% .25W FC TC=-400/+500	24546 24546 28480 28480 28480	(24-1)/8-10-1101-F C4-1/8-10-7501-F C4-1/8-10-1101-F (688-8775 (608-8775
A2R21 A2R22 A2R23 A2R23 A2R24 A2R25	0688 8776 0764-0095 0764-0095 0764-0095 0764-0095 0757-0289	76553	3	RELIGIOR 105% ,25% FC TC=-4007+500 REGISTOR 10K 5% CW NO TC=0+-200 REGISTOR 10K 5% CW NO TC=0+-200 REGISTOR 10K 5% CW NO TC=0+-200 REGISTOR 10K 5% CW NO TC=0+-100	78480 20480 20480 20480 20480 24546	0588 8778 0764-0005 0764-0005 0764-0005 C4-17/B-T0-1001-F
AZRZ6 Azrz7	0757-0293 0698-3155	1	3	PECICTOR 2K 1% ,125W F TC-0+-100 REGISTOR 4,64K 1% ,125W F TC=0+-100	24546 24546	CA 1/8-10-2001-F CA-1/11-T0-4641-F
A2U203 A2U302 A2U304 A2U404 A2U504	1020-3207 1026-0785 1026-0785 1026-0412 1026-0205 1026-0205	4 1 1 6 5	1	IC DRVR CHOG PRPHL GP LATCH INPHT QUAD IC OP ANP LOW DIAG-H-INPD DUAL B-DIP-C IC Comparator PPCN DUAL B DIP-P PKG IC V RgLTR 10-92 IC 70L85A Y RGLTR 10-92	1 20400 01295 27914 04713 04713	1120-3207 TL072ACJC Lm372N HC79L03C HC79L05ACP
	0300-1716 04938 0092	3	4	GPACER PRECS-IN 0,800 IN LG; 0.116 IN ID PG PC BOARD	28400 29400	0369-1716 04930-2000?
A3	04738-62601		2	GUBPANEL AGGY	28400	04738-62601
A3C1 A3C2	0160-4040 0160-4040		٤	CAPACITOR-FXD .022UF +-20X 250VAC(RHU) CAPACITOR-FXD .022UF +-20X 250VAC(RHG)	C0633 C0633	PHE 271 H 622 Phe 271 h 622
AJE1 AJE2 AJE3 AJE4 AJE5	1510-0476 1510-0476 1510-0076 1514-0010 1514-0007 0349-0719	4 4 B 7 0	а 1 – 1 – 1	BINDING POST GGL SGL-TUR JGK Dinding Post Ggl Sgl-Tur Jgk Binding Post Aggy Sgl Tidd-Gtud Dinding Post Aggy Sgl Tidd-Jgk Bik Ingulator-Bdg Post Abg Jape-gra	20460 20460 20460 20400 20400	1510-8876 1510-0876 1510-0878 1510-0838 1510-0887 0340-0739
A366 A367 A368 A369 A369	0340-0717 0340-0719 0340-0732 0340-0732 0340-0732 0340-0732	00777	3	INGULATOR-BDC POST ADG JADE-CRA Ingulator-bdg post Abg Jade-Cra Ingulator-bdg post Polyc Ingulator-bdg post Polyc Ingulator-ddg post Polyc	CD4B0 L0400 C0400 28400 CD489	5345-0717 5345-0717 0340-0732 5346-0732 6346-0732 6346-0732
AJE11 AJE12 AJE13 AJE14 AJE15	0340-0036 04730-00002 04930-00005 04030-00005 0400-0009 01350-0304	27274	****	TERMINAL-BLDR LUG LK-M°G FDR-04-GGR FT PNL LOULR Brkt Jehr Grohnet-BND ,125/1N-1D ,05 in GRV-DD Tubing-NG ,105-D/.062-RCVD ,02-Wall PVC	20409 20409 28409 28409 89409 89099	DAG-0816 84938-00085 04930-0005 6404-0005 67888 by discription
ајні Азн2 Азн3 Азн4 Азн5	2190-0027 2200-0103 2200-0103 2200-0103 2200-0103 2200-0103	9 N N N O	17	WASHER-LK INTL T 1/4 IN .256-IN-ID BEREW-MAEN A-AO .25-IN-LE PAN-HO-POZI Genew Mach 4-40 .25-IN-LE PAN-HO-POZI Berew-Mach 4-40 .25-IN-LE PAN-HD-POZI Gerew-Mach 4-40 .25-IN-LE PAN-HD-POZI	20480 20400 20400 20480 20480	C140-0027 C200-0103 Z200-0103 C200-0103 C200-0103 C200-0103
азна Азна Азна Азна Азна	P200-0107 P200-0107 P240-0009 P260-0007 P420-0003	6 6 3 3 7	5 5 5	GCREW-MACH 4-40, 375-IN-LG PAN-HD-PD21 GCREW-MACH 4-40, 375-IN-LG PAN-HD-PD21 NUT-KEX-W2LKWR 4-40-THD ,094-IN-THK NUT-KEX-W2LKWR 4-40-THD ,094-IN-THK NUT-HEX-DBL-CHAH 6-32-THD ,094-IN-THK	00000 00000 00000 00000 20400	ORDER BY DECORIPTION Order by Decoription Order by Decoription Order by Decoription 2420 0003
A3H11 A3H12 A3H13 A3H14 A3H15	2420-0003 2420-0083 2420-0003 2420-0003 2420-0003 2420-0003	77777		NUT-NEX-DDL-CHAN 6-32-THD .074-IN-THK NUT-NEX-DBL-CHAN 6-32-THD .074-IN-THK NUT-NEX-DBL CHAN 6-32-THD .074-IN-THK NUT-NEX-DBL-CHAN 6-32-THD .074-IN-THK NUT-NEX-DBL-CHAN 6-32-THD .074-IN-THK	20400 20400 20409 20409 20400 20400	C420-0003 C420-0003 C420-0003 C420-0003 C420-0003 C420-0003
азні 6 Азні 7 Азні в Азні в	2950-0086 3050-0227 3058-0227 3058-0227	333	l A	NUT-HEX-DDL-CHAN 1/4-32-THD .094-3N-THK W 3HER FL MILC ND. 6 .149-IN-ID WASHER FL MILC ND. 6 .147 IN-ID WASHER FL MILC ND. 6 .147 IN-ID	00000 20400 20400 20400	DRDCR by DI.CCRIPTION Jond-0227 Joba 0227 Joda 0227 Joda 0227
A333	1251-2357	В 5	1	CONNECTOR-AC PWR HP-9 MALE FEG-HTG Guitch war pagic UPDT 64 2605LDR-LUG	28480	1251-2357 3101-0428
A33) A371 '	3101-0420 9180-4395	5 7	1	PUR AFINER	29460	¥100 4395
i						
L				L		· · · · · · · · · · · · · · · · · · ·

Tuble 6-3. Replaceable Parts (Continued)

5

 \equiv

See introduction to this section for ordering information *Inducates factory selected value

6-9

)

Ł

j i

Ì

ł

Table 6-3	Replaceable Parts	(Continued)	Ì
-----------	-------------------	-------------	---

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Pert Number
A3W1 A3W2 A3W3	8150-2640 0150-2641 0150-3284	5 6 5) 1 1	WIRE PRANG W/GY 6000 PUC 7830 1000 Wire Drang W/Br/Gy 6000 PUC 7830 1000 Wire Irang G/Y 6000 PUC 19830 1000	20400 20400 20400 20400	1)360-2040 0)50-2043 0)60-3284
A4 A4C1 A4E2	04938-62602 0340-8947 0346-8949	Б 13 19	2 4	HT EPREADER AGGY Ingulator -x6tr tirm -cndct Ingulator -x6tr tirmcndct	28400 28400 28400	84938-62682 8348-8949
A4E3 A4E4 A4E5 A4H3	0340-0949 0348-0949 04930-00006	0 13 1	I	INGULATCH-XGTR THRM-CNDCT Thgulator-Xgtr Thrm-Cndct ht oppeader	28480 28400 28400	0340-0749 0340-0749 0340-6949 64938-06066
A4H2 A4H3 A4H4 A4H5	0820-0120 0520-0120 0521-0120 0521-0120 0570-0120 0570-0110	77771	4	SCREW-MACH 2-56, 25-IN-LG PAN-HD-FC21 GCREW-MACH 2-56, 25-IN-LG PAN-HD-FC21 SCREW MACH 2-56, 25-IN-LG PAN-HD-FC21 GCREW-MACH 2-56, 25-IN-LG PAN-HD PO21 NUT-HCX-DEL-CHAM 4-40-THD ,124-IN-THK	00000 00000 00000 00000 00000	ORDER BY DEGERIPTION Order by Deceription Order by Deceription Order by Deceription
A4H6 A4H8 A4H8 A4H9 A4H9 A4H9	6540-6010 3544-6018 6570-0010 6418-0081 9610-0001	11100	*	NUT-HEX-DDL-CHAM 4-40-THD ,124-TH THK NUT-HEX-DDL-CHAM 4-40-THD ,124-IN-THK NUT-HEX-DDL-CHAM 4-40-THD ,124-IN-THK NUT-HEX-DDL-CHAM 2-56-THD ,062-IN-THK NUT-HEX-DDL-CHAM 2-56-THD ,062-IN-THK NUT-HEX-DDL-CHAM 2-56-THD ,062-IN THK	00000 00000 00000 00000 00000	ORDER DY DEGERIPTION Grder by degeription Grder by degeription Order by deceription Order dy deceription
A4H11 A4H12 A4H13 A4H13 A4H13 A4H15	0/18+0081 0610-9081 12195-0014 2170-0014 2190-0014	A 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A	NUT-HEX-DBL-CHAM 2-64 THD .062-IN-THK NUT-HEX-DBL CHAM 2-66-THD .062-IN-THK Habier-LK INTL T NO. 2 .007 IN-ID Washer-LK INTL T NO. 2 .007 IN-ID Washer-LK INTL T NO. 2 .007 IN-ID	00000 60000 20400 20400 20400	CRDER BY DESCRIPTION Grder by description C190-8014 E190-8014 E190-8014
ланіі Ланіі Ланіів Даніір Данір	2170-0014 2268-0720 2200-0728 2200-0728 2200-0720 2200-0720	17777	4	WABHER LK INTL T NO. 2 ,007-IN-ID BEREW-NACH A-40 ,312-IN-LG PAN-HD-GLT Gereu-Hach A-40 ,312-IN-LG PAN-HD-GLT BEREW-MACH A-40 ,312-IN-LG PAN-HD-GLT BEREW-MACH A-40 ,312-IN-LG PAN-HD GLT	20400 00000 00000 00000 00000	2178-0014 Order by degeription Order by degeription Order by degeription Order by degeription
A4H21 A4H2P	2420-0023 3103-0010	10	4 1	NUT-HEX-WILKWR 6-32-THD .197-IN-THK GWITCH-THRM FXD 17CC 6A DPN-DN-RIDE	20486 20489	2420 0023 3103-0015
A4R1 A4R2	0011-3687 0011-3689	8 0	2	PEGISTOR 210 DING 5W Register 210 Ding 5W	20400 20400	9011-3687 9811-3687
A4U1 A4U2 A4U3 A4U4	1826-8527 1826-8527 1826-8527 1826-8527 1826-8527	9 9 9 0	3 1	IC 337 V PGLTP 10-220 IC 337 V RGLTP 10-220 IC 337 V RGLTP 10-220 IC 7805 V RGLTP 10-220	27014 27014 27014 27014 87263	LN337T LN337T LN337T 7805UC
A483	- 04730 -61603	R	1	CAPLE ABBY	284BU	04730·61601
A1 A2 A3 A4	04930-60001 04930-60002 04930-62601 04930-62602	4		CHAGDIB PARIG Main PC BD Abby PG PC Board Aggy Suppanel Aggy Hi Gpreader Aggy	28400 20450 28400 28400	04930-60001 04938-60002 04938-60002 04938-62601 04938-62602
E) C2 F3 E4 E5	4040-2171 7120-4184 04938-00001 04930-08083 04930-08083	0 2 8 0 1	1	HOUGING Lapel-"Identification I-in-WD 2.5-in LG FT-PHL Upper Left drat Right Brat	28400 20400 28400 28400 28400 28400	AD48-2171 7120-4104 04930-60001 04930-60003 04930-00004
H1 H2 H3 H4 H5	P200-0103 2209-0103 2200-0103 2200-0103 2200-0117 P200-0117	2 2 2 8 8 8 8	٨	BCREW HACH 4-40 ,23-EN-LC PAN-HD PO21 BCREW-HACH 4-40 ,25 EN-LC PAN-HD-PO21 BCREW-HACH 4-40 ,05-EN-LC PAN-HD PO21 BCREW-HACH 4-40 ,075-EN-LC PAN-HD-PO21 BCRCW-MACH 4-40 ,075-EN-LC PAN-HD-PO21	;0400 23400 20400 00000 00000	2200-0103 5200-0103 2200-0103 (BDCE & Description GRCEE by Description 3
H6 H7 H8 H9 H10	2268-0117 2200-0117 2368-0115 2368-0115 2368-0115	B G 4 4 4	3	6CREW FACH 4-40 .875 IN-LC PAN-HD-PUZI 6CREW FACH 4-40 .875 IN-LC PAN-HD-PUZI 6CREW FACH 4-40 .875 IN-LC PAN-HD-PUZI 6CREW FACH 6-32 .312 IN-LC PAN-HD-PUZI 6CREW FACH 6-32 .312 IN-LC PAN-HD-PUZI 6CREW FACH 6-32 .312 IN-LC PAN-HD-PUZI	00000 00000 00000 00000 00000	ORDER BY DESCRIPTION Urder by description Order by description Order by description Order by description
1133 H122 H133 H144 H155	2360-0131 2360-0195 2360-0195 2360-0203 2360-0203	4 0 0 1 1	1 2 0	CLREW HACH 6-12 1.123-IN-LG PAN-HD PUTI BEREW-HACH 6-32 .112-IN-LG PAN-HD-POTI BEREW-HACH 6-32 .312-IN-LG PAN-HD-POTI GEREW HACH 6-32 .625-IN-LG PAN-HD-POTI GEREW HACH 6-32 .625 IN-LG PAN-HD-POTI	04000 25400 21400 60000 60000 60000	ORDER BY LEGERIPTION 23.9-0195 2369-0195 Order by Defeription Order by Defeription
H16 H17 H10 H19 H20	2950-0001	1 1 1 0 0	7	NUT-HEX-W/LKWI 6-32-THD .105 IN THK NUT-HEX-W/LKWI 6-32-THD .105 IN THK NUT-HEX-W/LKWI 6-32-THD .105-IN THK NUT-HEX-W/LKWI 6-32-THD .074-IN THK NUT-HEX-DDL-CHAM 3/0-32-THD .074-IN THK NUT-HEX-DDL-CHAM 3/0-32-THD .074-IN THK	EB400 20400 20400 20480 00000 00000	2420-0023 2420-0023 2420-0023 URDLR by description Order by description
H21 H22 H23 H24 H25	2950-0001 2950-0001 2950-0001	0 0 6 8		NUT-HEX DDL-CHAM 3/0-32 THD .094-3N THK NUT-HEX-DDL-CHAM 3/0-32 THD .054-1N THK NUT HEX-DDL-CHAM 3/0-32-THD .054-1N THK NUT-HEX-DDL-CHAM 3/0-32-THD .094-1N THK NUT-HEX-DDL-CHAM 3/0-32-THD .074-IN THK NUT-HEX-DDL-CHAM 3/0-32-THD .074-IN THK	88000 00000 09000 09000 09000	DREER BY DEGERIPTION Order by Degeription Duder by Degeription Order by Degeription URDER by Degeription

See introduction to this section for ordering information *Indicates factory selected value

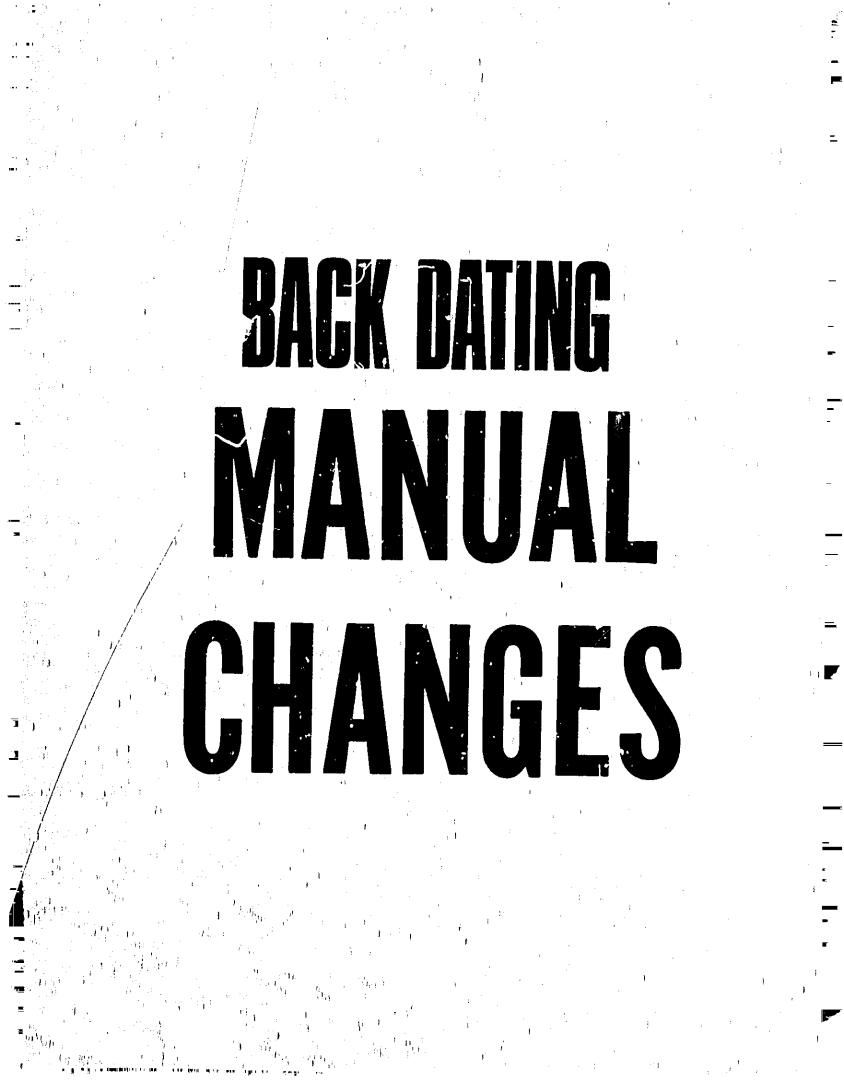
ţ,

6-10

;

Reference Designation	HP Part Number	G Qty	ty Description		Mfr Part Number
H26 H27 H20	3050-0067 3050-0067 3050-0067	7 7 9	WASHEN FL MILE 5/16 IN .375-IN-ID WASHER FL MILE 5/16 IN .375-IN-ID WASHER-FL MILE 5/16 IN .375-IN-ID	20400 20400	3050-0067 3050-0067
H29 H30	3050-0067 3050-0067	9 9 9	WAGHER FL ATLE 5/16 IN .375-IN-ID WACHER FL ATLE 5/16 IN .375-IN-ID	20400 20400 20400	3050-0967 3050-0067 3050-0067
H31 H32 H33	.5050-0067 3050-0067 3050-0027	9 7 1	WACHER FL MILE 0/16 IN .375-IN-ID Wacher FL MILE 5/16 IN .375-IN-ID Whicher FL MILE ND, 6 .1.7-IN-ID	20480 20480	3058-0067 3956-0067
M)		1 1	CARLE ADDY TUAND BICHDOT JOK JKT	20460 20400	3050-8227 0120-1378
	9211-4580 9211-4581 9226-4120	1206	CARTON COPR FGC 12-IN-LG 12-IN UD Carton-Corr RGC 290-M-LG 144-MM-VD Pad Copr BCT 390HM-LG 260HM-VD	20400 20400	7233-4500 9233-4503
	7222-0667 04925-27081	4 i 3 2	BAC-AGTAT POLYETH FLM ENV 13.5X0-IN OPNG CUGHION-END CAP	20400 20400 20400	9222-4128 9222-4667 84925-29881
	04920-90043	6 3 9 1 2 1	GERIAL TAG DP & Blruicl Han Duick Her Guige	20400 28400 28400	04730-80001 04730-90003
				20400	0472B -90006
			1		
,					· ·
	I. I.			1	· · · · · · · · · · · · · · · · · · ·
	:				
					:
					÷*
			· · ·		
					:
					ı
	ĺ.				
1-					

Table 6-3. Replaceable Parts (Continued)

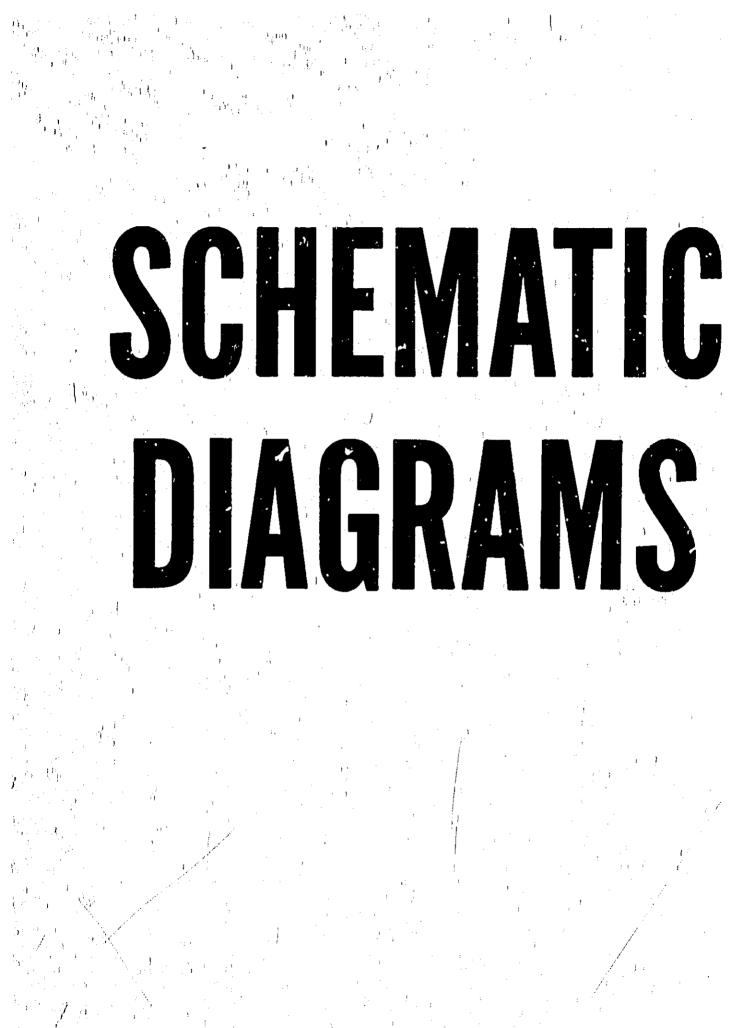

See introduction to this section for ordering information *Indicates factory selected value

1

;

6-11/(6-12 blank)

1


7-1/(7-2 blank)

SECTION VII

MANUAL CHANGES

7-1. INTRODUCTION

7-2. This section normally contains information for adapting this manual to instruments for which the content does not apply directly. Because this manual does apply directly to instruments having serial numbers listed on the title page, no change information is given here. Refer to INSTRUMENTS COVERED BY THIS MANUAL in Section I for additional important information about this serial number coverage.

SECTION VIII

SERVICE

8-1. INTRODUCTION

8-2. This section contains service information for the HP 4938A NCATS. Included are the circuit descriptions, component locators, and schematics.

8-3. SAFETY CONSIDERATIONS

8-4. This section contains warnings and cautions that must be followed for your protection and to avoid damage to the equipment.

8-3. Before any repair is completed, ensure that all safety features are intact and functioning, and that all necessary parts are connected to their protective grounding means. Safety markings displayed inside the instrument must be adhered to.

8-6, CIRCUIT DESCRIPTION

8-7. The HP 4938A contains four main sections. They are the mechanical, simplex transformers, originate circuitry, and the terminate circuitry. See figures 6-1, 8-2, and 8-4.

8–8. Mechanical

8-9. Most of the originate circuitry, terminate circuitry, and the simplex transformer circuitry is located on the upper circuit board (A1). The power supply and relays are located on the lower circuit board (A2). The series regulators in the power supply and the 5-watt load resistors are located on a heat spreader (A4). The thermai rise of the heat spreader bracket is controlled by a thermal cutout switch, A4TS1. The switch is activated at 55 degrees C surface temperature. When the thermal cutout switch is activated the CIRCUIT FAULT indicator will light.

8-10. Simplex Transformers

8-11. There are two simplex transformers (A1T110 and A1T410) in the instrument. The transformers allow the conversion between 2-wire and 4-wire circuits. The transformers have a one to one turns ratio with the secondary center tapped. The center tap allows for a dc signal to be applied to the circuit without imbalancing the line. The loop dc resistance is also reduced to half because the tip and ring are, in effect, in parallel.

8-12. The transformers can be connected to the terminate circuitry or the originate circuitry, or they can be disconnected from both, through switch A1S207. Also, the transformers are automatically disconnected from the terminate and originate circuitry when a 310 jack is inserted into the SX/SX1 jack, A1J208.

Note

By convention, the transmit side of a 4-wire termination set is carried on T and R leads. The receive direction is carried on T1 and R1 leads.

8-1

MODEL 4938A SERVICE

8-13. Two wires of a 4-wire input dircuit are connected to jack AltJ309, T 1 and R1. The other two wires are connected to jack AltJ209, T and R. The center tap of each transformer becomes one conductor of the internal twowire bidirectional circuit. This circuit becomes the conducting path for loop closure, ring trip closure, loop current measurement, and the 3-ringer load.

8-14. Originate Circuitry

8-15. The originate circuitry allows margin testing to be performed on the line from the originate end. The circuitry is wired to function as either a ringer load or as a loop closure for the circuit under test.

8-16. When the originate circuit is to function as a ringer load, the input must be connected to the ORIGINATE CIRCUIT Jack, A1J305. There are two ringer loads available; A1R10, 2330 ohms (REN3) or A1R12, 330 ohms (TRIP). The signal flows from A1J305 to the LOOP I, A1S300 switch. The LOOP I switch, when in the normal position (out), is wired through to REN 3, A1S300 switch. When LOOP I switch is pressed in, the signal flows to the front panel COM and AMP MONITOR binding posts. The monitor binding posts are ac coupled to the line by two 2,2 uF capacitors, A1C11 and A1C13.

8-17. When REN 3 switch is closed A 1R10, 2230 ohms ringing load, is connected into the signal flow circuit. This load is the equivalent to three ringers. The ringing voltage (>55 Vrms) can be measured by connecting a voltmeter across the VOLTS and COM MONITOR binding post.

8-18. When initiating a loop start the input must be connected to the ORIGINATE CIRCUIT Jack, A1J305. The signal flows through the LOOP I switch to the LOOP, A1S300 switch. Closing the LOOP switch inserts a 430-ohm load into the circuit. This provides a dc current path (about 20 mA) for the loop closure.

8-19. When in the loop start signaling mode a ground start can be simulated by pressing the GND START pushbutton. This places an additional 550 ohms, A 1R8 into the circuit.

8-20. The loop current can also be measured by connecting a current meter to the AMPS and COM MONITOR binding posts and pressing the LOOP I pushbutton.

8-21. Terminate Circuitry

8-22. The terminate circuitry consists of the power supply, digital control logic, and the analog sensing circuitry. The terminate circuitry provides a ringing voltage at either 20 Hz or 30 Hz, at -48 Vdc battery. The ringing voltage can be applied to the SX/SX1 jack by setting the front panel switch to the up position.

MODEL 4938A SERVICE

8-23. The power supply consists of five different voltage supplies. There are two supplies rated at -48 volts, one at -38 volts, one at +5 volts, and one at -5 volts.

8-24. The $\pm/-5$ volt supplies are used to power the digital logic, operating amplifiers, and relays. These supplies are standard full-wave rectifiers with three terminal regulators. The ±5 volt supply uses two of the regulators to keep relay noise from interfering with the digital logic.

8-25. One of the -48 volt supplies is used as the battery simulator. The other -48 volt supply is added to the -38 volt supply to provide 86 V rms. Relay A2K 101 is used to select either the -48 volts for battery simulation or the output of relay A2K 103, which is the ringing voltage. The ringing voltage is generated by switching A2K 103 between +48 volts and -134 volts. Relay driver A2U203 triggles relay A2K 103 at a rate of either 20 Hz or 30 Hz depending on the selected ringing frequency.

8-26. The digital logic controls the operation of the ringer. The clock is taken from the power line by full wave rectifying it. This voltage is then sent to the Schmitt trigger A 10105 where it is shaped into a square wave. The output frequency from A20105 is 120 Hz. The clock signal is then sent to A 10100 and A 10108 where the frequency (120 Hz) is divided by 6 or 4 respectively. This gives the 20 Hz or 30 Hz ringing frequency. The output of the dividers is then used to drive A 10203 and A 10408, which triggles relay A2K 103 at the correct rate.

8-27. A 10405 and A 10406 are used to generate the two second on four second off'ringing time. The clock turns the frequency/generator on for 2 seconds and off 4 seconds. Placing jumper JU1 in the T position the ring generator will run continuously.

8-28. The analog sensing circuit consists of A2U302, A2U304 and a thermal switch A4TS1. If the temperature in the instrument exceeds 55 degrees C the switch will op in and disconnect the ringer.

8-29. A 1U302 is used to determine if dc current is flowing in the loop. The average voltage is sensed across A2R2. If the average voltage is above 74 mV (about 16 mA) A 1U107 will trip and stop the ringing generator and the) OFF HOOK LED will light. A2U304 is an overvoltage/current detector. When it the current flow in the ring exceeds 138 mA, A2U304 will open relay A2K200.

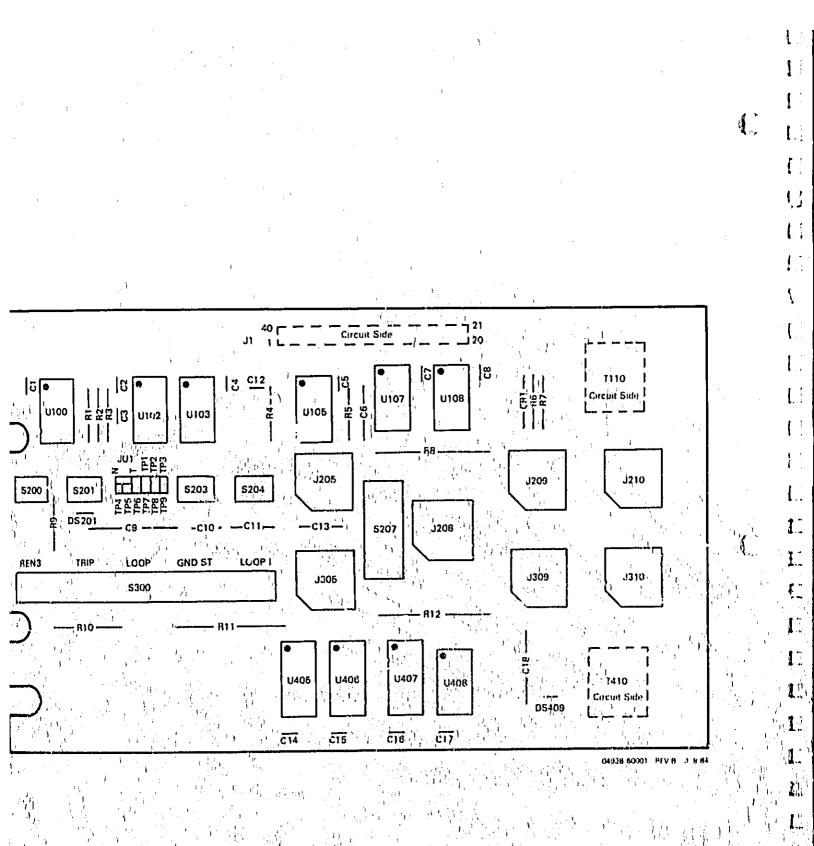
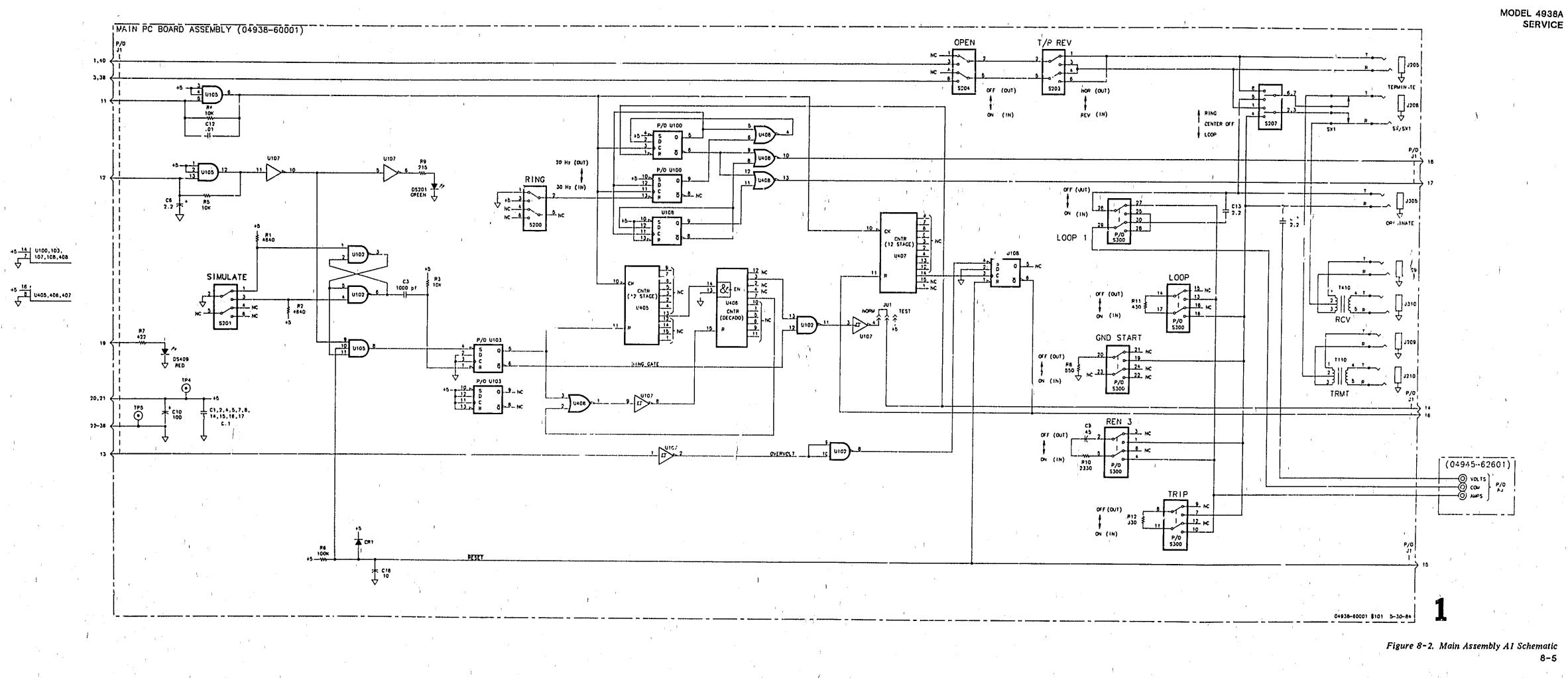
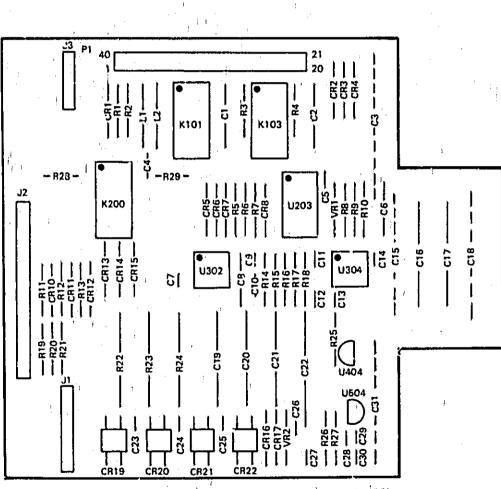
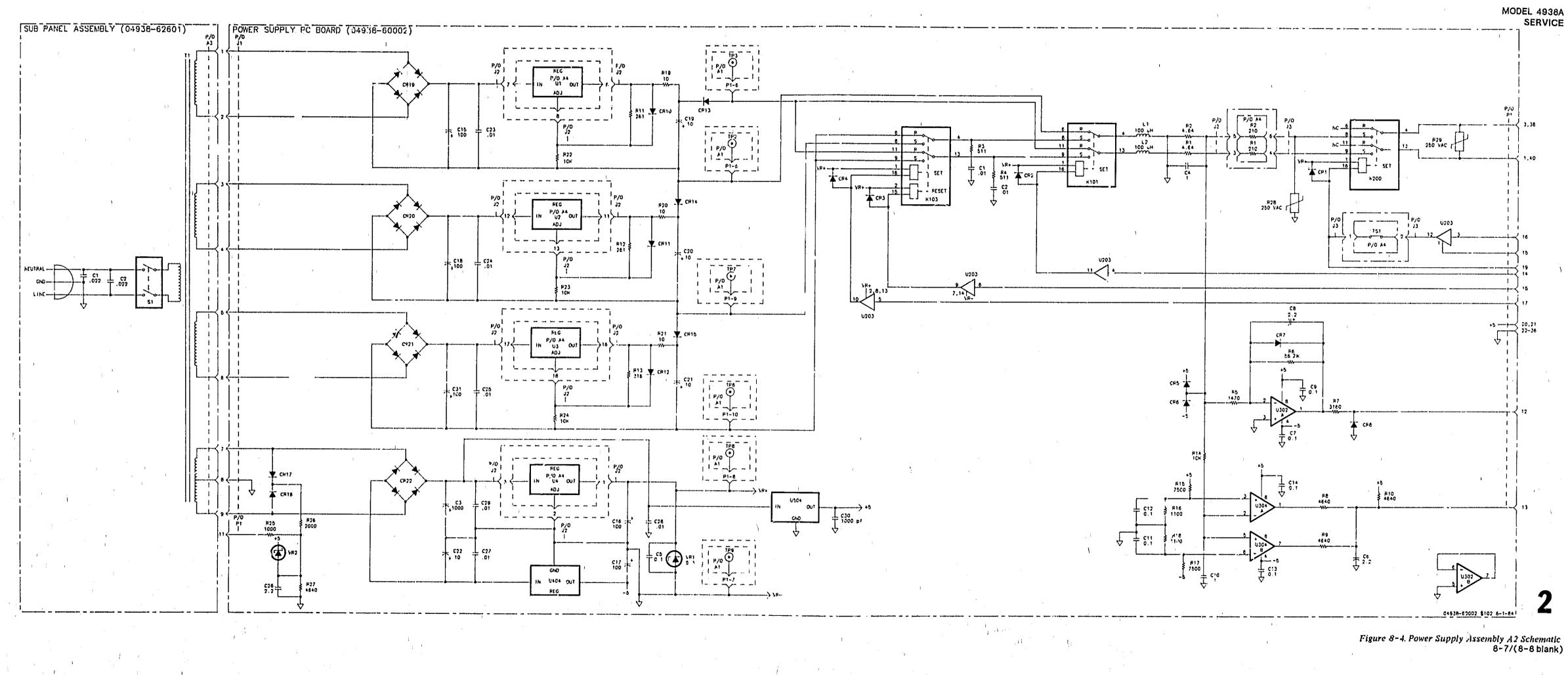



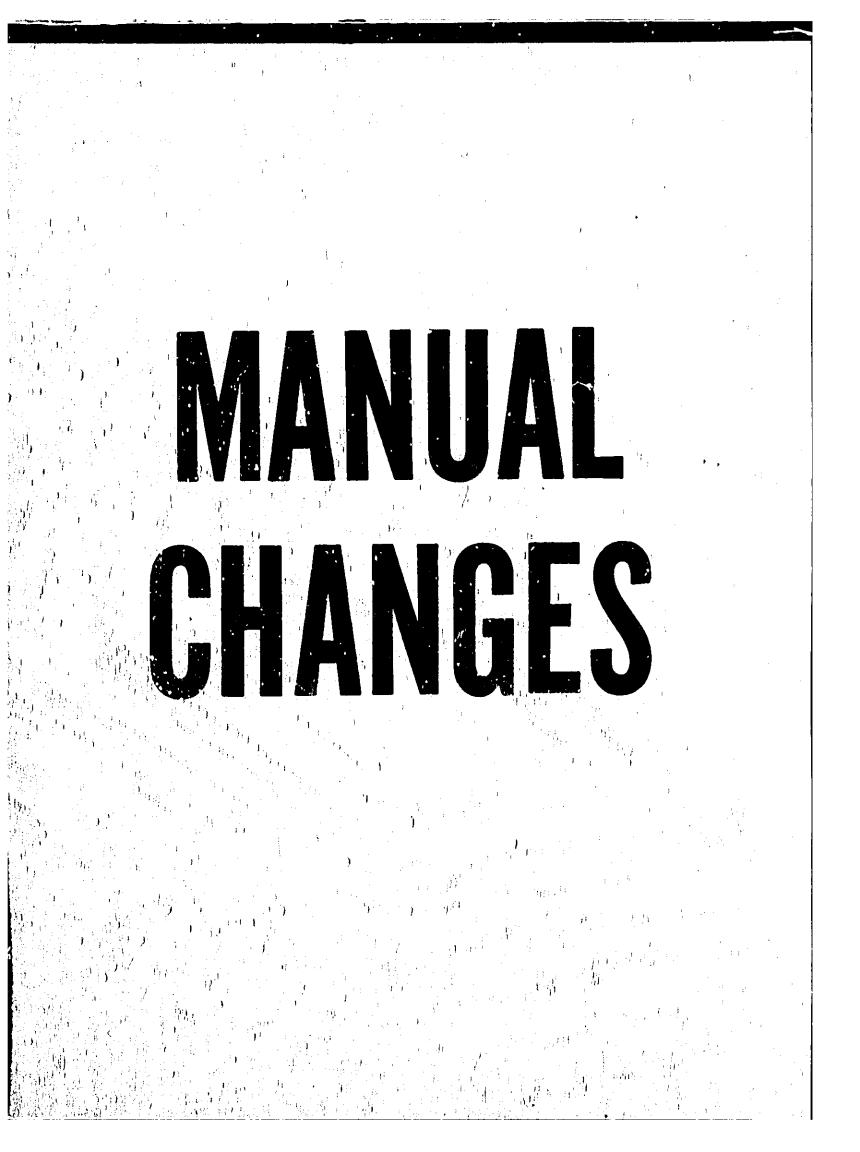
Figure 8-1: Main Assembly AI Component Locator



8-5

MODEL 4938A SERVICE




4

04938 63002 PEV A 6 84

Figure 8-3. Power Supply Assembly A2 Component Locator

'n

MANUAL CHANGES

MANUAL DESCRIPTION	CHANGE DATE 14 December 1984
NSTRUMENT: 4938A	(This change supersedes all
	earlier dated changes)
ERIAL PREFIX: 2432A	
	* Make all changes listed as ERRATA.
ATE PRINTED: September 1984	
	* Check the following table for
IP PART NO: 04938-90003-B	your instrument's serial prefix
	or serial number and make listed
IICROFICHE NO: 04938-90004-B	change(s) to manual.

If your Instrument	Make these	If your instrument	Make these
has serial prefix	changes to	has serial prefix	changes to
or serial number	your manual	or serial number	your manual

2450A

ERRATA

```
Title Page:
```

```
Change: serial numbers prefixed from 2432A to 2431A
```

Change 1

```
Section I Page 1-4, Ringer Termination
Change REN-3 load impedance to:
1780 ohms +/-1% in series with 5 uF +/-20% nonpolar
```

Section IV Page 4-7

```
Change step 10 to read
```

```
10. The amplitude of the signal display on the digital voltmeter should be from 69 to 81 Vrms.
```

```
Change step 13 to read
```

```
13. The ON/OFF signal time as seen on the oscilloscope should be 50 ms +/-6 ms.
```

```
Section IV Page 4-9
```

```
Change step 10 to read
10. The amplitude of the signal display on the digital voltmeter should
be from 69 to 81 Vrms.
```

```
Change step 13 to read
```

```
13. The ON/OFF signal time as seen on the oscilloscope should be 33 \text{ ms} + 7-6 \text{ ms}.
```

Change 1 (cont;d)

Section VI Page 6-7 Change AIC9 to Part Number 0180-3645 CAPACITOR-FXD 5 uF 20 % 200V AIR10 to Part Number 0811-3721 RESISTOR 1.78 k, 1%, 3W

時にいる

Section VIII Page 8-5 Change AI9C from .45 to 5 A1R10 from 2330 to 1780

STRIFT.

나 나라 가

a gali

an sainte page 2 of 2